查看更多>>摘要:2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a biotoxin of polybrominated diphenyl ether (PBDEs) frequently detected in the environment. Apoptosis and cell cycle arrest are important toxic phenomena of xenobiotics that inhibit cell proliferation. In this study, we investigated the effects of BDE-47 (5 mu M, 10 mu M, 20 mu M, 40 mu M) on cell viability, morphology, cell cycle and apoptosis. BDE-47 significantly decreased cell viability, and morphological alterations were observed. The significant increase in cells at G1 phase indicated the occurrence of G1 phase cell cycle arrest in RTG-2 cells. An acridine orange and ethidium bromide (AO/EB) staining assay was employed and revealed the induction of apoptosis in RTG-2 cells. The results indicated that BDE-47 exposure inhibits cell proliferation. Transcriptome analysis was applied for further evidence. A total of 1300 differentially expressed genes (DEGs) were identified in RTG-2 cells, among which 26 DEGs were associated with the cell cycle and apoptosis. Western blotting and qPCR analyses also showed the expression of cell cycle- and apoptosis-related proteins and genes. Mapping the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, p53, Tumor necrosis factor (TNF), Mitogen-activated protein kinase (MAPK), phosphatidylinositide 3-kinase-AKT (PI3K-AKT), and reaction oxygen species (ROS)-mediated signaling pathways were determined to be the major pathways involved in modulating the cell cycle and apoptosis. Since we demonstrated simultaneous ROS overproduction during BDE-47 exposure in a previous study, we speculated a possible explanation for the observation: BDE-47-induced ROS overproduction was the initiating signal, which activated cell cycle arrest and apoptosis and finally inhibited cell proliferation.
Park, Chang GyunRyu, Chang SeonSung, BaeckkyoungManz, Andreas...
11页
查看更多>>摘要:In recent decades, extensive efforts have focused on developing in vitro platforms mimicking fish livers to better understand the acute or chronic effects of toxicants on lower aquatic vertebrates. Fish liver cell lines have emerged as a promising culture system for these in vitro platforms because they complement the currently limited in vitro tools that mostly consist of mammalian cell lines and adhere to the 3Rs: replacement, reduction, and refinement of living animal tests. However, monolayer cell lines have lower transcriptional and physiological responses upon exposure to toxic chemicals than freshly isolated primary cells. To overcome this challenge, we utilized a three-dimensional (3D) spheroid-based in vitro platform, in which hepatocyte cells had self-organized into spheroid forms via E-cadherin bonds. This platform exhibited augmented transcriptomic and phenotypic regulation of liver cells in comparison to monolayer cells. We examined the organoid platform using the zebrafish liver (ZFL) cell line as a model system. ZFL cells spontaneously clustered into 3D spheroids with long-term viability by optimizing cell seeding density on a non-adherent substrate. Interestingly, 3D ZFL spheroids treated with estrogenic chemicals were activated to synthesize a higher level of vitellogenin (Vtg) than monolayer cells. Whole-transcriptome sequencing analysis confirmed that 3D ZFL spheroids had greater transcriptional regulation of genes related to reproductive toxicological response and liver functions, such as the urea cycle, estrogen receptors, and vitellogenin, compared to monolayer cells. These results may contribute to the engineering of novel 3D in vitro platforms for screening harmful chemicals and improving understanding of the underlying liver toxicity mechanisms at the molecular and cellular levels.
查看更多>>摘要:Global climate change is predicted to have significant impacts on ecological interactions such as host-parasite relationships. Increased temperatures may also interact with other anthropogenic stressors, such as chemical contaminants, to exacerbate or reduce parasite transmission. However, studies on the effects of pesticides on non-target species are typically conducted at one standard temperature, despite the toxicity of many agrochemicals being temperature-dependent. Furthermore, most studies assessing the effects of temperature on pesticide toxicity have been conducted on host organisms, limiting our understanding of how temperature affects the toxicity of pesticides to free-living parasite stages as they move through the environment in search of a host. Using the free-swimming cercariae stage of the trematode Echinostoma trivolvis, we examined how the toxicities of three different pesticides (a carbamate insecticide, strobilurin fungicide, and triazine herbicide) vary by temperature by monitoring cercarial swimming activity over time. Our three main findings were: 1) a strong main effect of temperature across all pesticide trials - higher temperatures caused cercariae to cease swimming activity earlier, likely due to an increased rate of energy expenditure, 2) atrazine, azoxystrobin, and carbaryl were directly toxic to cercariae to some degree, but not in a predictable dose-dependent manner, and 3) the temperature at which pesticide exposure occurs could affect its toxicity to cercariae. The interaction between pesticide and temperature was most evident in the azoxystrobin exposure; azoxystrobin caused cercariae to cease swimming activity earlier at 30 degrees C but caused cercariae to maintain swimming activity longer at 18 degrees C relative to their respective pesticide-free control treatments. These findings highlight the importance of conducting toxicity assays at multiple temperatures and suggest that the combined effects of pesticides and temperature on host-parasite interactions may be difficult to generalize.
查看更多>>摘要:Bisphenol-A (BPA) has been reported to disrupt blood-testis barrier (BTB) integrity in mammals. However, its effects on fish testis sertoli cell (SC) barrier and the underlying mechanisms have been largely unknown to date. To study the SC barrier toxicity induced by BPA, male rare minnows (Gobiocypris rarus) were exposed to 15 mu g L-1 BPA for 7, 14 and 21 d. Meanwhile, a 25 ng L-1 17 alpha-ethynyl estradiol (EE2) group was set up as the positive control. Results showed that BPA induced immune response in the testes and decreased offspring hatching rate. The biotin tracer assay showed that BPA exposure destroyed the integrity of the testis SC barrier. In addition, BPA exposure decreased the expressions of occludin, ZO-1, CX43 and N-cadherin proteins. The transcripts of CX43 and occludin were significantly decreased and SP1 recruitment in each gene promoter was repressed after BPA exposure. Moreover, the cytokines (TNF alpha and IL-1 beta) were significantly increased while the JNK signal pathway was activated after BPA exposure. BPA also increased the matrix metalloproteinases 1 (MMP1) and MMP2 levels in the testes. In addition, estrogenic effect did not entirely explain the mechanism by which BPA disrupted the SC barrier in G. rarus testes. These results suggested that BPA disrupted the SC barrier integrity by inhibiting SP1 enrichments within CX43 and occludin 5' flanking regions through activated cytokines/JNK signaling pathway. MMPs were also involved in the disruption of SC barrier caused by BPA exposure.
查看更多>>摘要:Hypoxia can induce neural excitotoxicity in mammals, but this adverse effect has not been investigated in aquatic animals to date, especially in crustaceans. This study explored the induction effect and toxic mechanism of acute hypoxia stress (1.0 +/- 0.1 mg dissolved oxygen /L) for 24 h on neural excitotoxicity in juvenile Chinese mitten crab, Eriocheir sinensis. The results showed that hemolymph glucose and serum lactic acid content were significantly increased, and the mRNA expression of crustacean hyperglycemic hormone and hypoxia-inducible factor 1 alpha were significantly up-regulated in the hypoxia group compared with control. RNA-Seq results confirmed that acute hypoxia stress had a more significant impact on carbohydrate metabolism than lipid and protein metabolism. In addition, the TUNEL assay showed that the apoptosis rate of nerve cells was significantly higher in the hypoxia group than in the control, and similar trends were observed in the expression of apoptosis-related genes. RNA-Seq results also showed that acute hypoxia stress-induced neuronal apoptosis by regulating multiple apoptosis-related pathways. Moreover, free glutamate and GABA contents in the nerve tissue of thoracic ganglia were significantly higher in the hypoxia group than in the control group. Furthermore, the mRNA expression of NMDA related receptors was significantly up-regulated in the hypoxia group compared with the control. Similar trends were observed in the expression of calcium-dependent degrading enzymes and endogenous antioxidant-related proteins or enzymes. Meanwhile, the mRNA expression level of high-affinity neuronal glutamate transporter in the hypoxia group was significantly up-regulated compared with the control, whereas the vesicular glutamate transporter was significantly down-regulated. Furthermore, NMDA-R antagonists (MK-801 and Ro25-6981) injection showed that NMDA-R served as the bridge and core position of glutamate-induced neural neurotoxicity. This study provides a new perspective and theoretical guidance for exploring the regulation of hypoxic tolerance in E. sinensis.
查看更多>>摘要:Although natural populations can rapidly adapt to selection pressures, the fitness consequences of selection are controversial. In this study, a selection experiment was conducted with replicate populations of Brachionus dorcas that were exposed to two sublethal concentrations (26.8 and 78.3 mg/L) of oxytetracycline (OTC), followed by two common garden experiments (population growth and life table experiments). During the 102-day (approximately 36 asexual generations) selection experiment, a markedly increased growth rate but a significantly decreased mictic ratio over time in the populations exposed to OTC when compared to the control populations suggested that the former adapted to the selection pressures and that a trade-off exists between asexual and sexual reproduction. The high and stable population growth rates after 90 days of OTC selection illustrate an example of evolutionary rescue. After 102 days of selection, OTC-selected populations showed higher population growth rates than the control populations when exposed to OTC, indicating significantly increased tolerance. OTC-selected populations showed a lower average growth rate, longer average generation time and life expectancy at hatching, and higher average net reproduction rate and proportion of mictic offspring than the control populations in the absence of OTC, which indicate that OTC selection results in two fitness costs and three fitness gains and that the effect of OTC selection on fitness differs with the measured fitness variables. Both the evolutionary potential of populations under the stress of higher concentrations of OTC and the fitness costs and gains of selection in the absence of OTC indicate that past exposures to pollutants cannot be neglected when evaluating the effects of current stressors on natural populations.
查看更多>>摘要:Around 100 Mt of phosphogypsum (PG) have been deposited in large stacks on the salt marshes of the Tinto River estuary in Huelva (SW Spain), covering about 1000 ha. These stacks contain extremely acidic water (pH < 2) with high concentrations of pollutants which can cause emissions into their surroundings, generating important environmental concerns. Despite many chemical, geological or hydrological studies have been conducted to characterize the PG stacks of Huelva, the microbial community inhabiting this extreme environment remains unexplored. Using a 165/185-rRNA-high throughput sequencing approach, we have uncovered the main taxonomic groups able to live in the acidic metal-contaminated water, which is in direct contact with the PG, demonstrating for the first time the existence of a huge diversity of microbial species in these extreme conditions. In addition, the physicochemical characteristics of the water sampled have been analyzed. These studies have revealed that the most abundant bacteria found in two different leachate samples of the PG stacks belong to the genera Acidiphilium, Pseudomonas, Leptosprillum, Acidithrix, or Acidithiobacillus, typically found in acid mine drainage (AMD) environments, which in total represent around 50% of the total bacterial community. Biodiversity of eukaryotes in PG water is lower than that of prokaryotes, especially in the water collected from the perimeter channel that surrounds the PG stacks, where the pH reaches a value of 1.5 and the activity for Po-210, concen- trations exceed 300 Bq L-1 for 238 U or 20 Bq L-1 values which are from four to five orders of magnitude higher than those usually found in unperturbed surface waters. Even so, an unexpected diversity of algae, fungi, and ciliates have been found in the PG stacks of Huelva, where chlorophyte microalgae and basidiomycetes fungi are the most abundant eukaryotes. Additional bioinformatics tools have been used to perform a functional analysis and predict the most common metabolic pathways in the PG microbiota. The obtained data indicate that the extreme conditions of these PG stacks hide an unexpected microbial diversity, which can play an important role in the dynamics of the contaminating compounds of the PG and provide new strains with unique biotechnological applications.
查看更多>>摘要:Continuously increasing plastic production causes a constant accumulation of microplastic particles (MPs) in the aquatic environment, especially in industrialized and urbanized areas with elevated wastewater discharges. This coincides with the release of persistent organic pollutants (polycyclic aromatic hydrocarbons (PAHs), pesticides) entering limnic ecosystems. Although the assessment of potential effects of environmental pollutants sorbed to MPs under chronic exposure scenarios seems vital, data on potential hazards and risk by combined exposure to pollutants and microplastics for aquatic vertebrates is still limited. Therefore, zebrafish (Danio rerio) were exposed over 21 days to the organophosphate insecticide chlorpyrifos (CPF; 10 and 100 ng/L) and the PAH benzo(k)fluoranthene (BkF; 0.78 and 50 mu g/L) either dissolved directly in water or sorbed to different MPs (irregular polystyrene, spherical polymethyl methacrylate; <= 100 mu m), where CPF was sorbed to polystyrene MPs and BkF was sorbed to polymethyl methacrylate MPs. Contaminant sorption to MPs and leaching were documented using GC-EI-MS; potential accumulation was studied in cryosections of the gastrointestinal tract. Enzymatic biomarkers and biotransformation were measured in liver and brain. Overall, exposure to non-contaminated MPs did not induce any adverse effects. Results of fluorescence tracking, CYP1A modulation by BkF as well as changes in acetyl-cholinesterase activity (AChE) by CPF were less pronounced when contaminants were sorbed to MPs, indicating reduced bioavailability of pollutants. Overall, following exposure to waterborne BkF, only minor amounts of parent BkF and biotransformation products were detected in zebrafish liver. Even high loads of MPs and sorbed contaminants did not induce adverse effects in zebrafish; thus, the potential threat of MPs as vectors for contaminant transfer in limnic ecosystems can be considered limited.
查看更多>>摘要:Discontinuation of amitriptyline (AMI) has been demonstrated to induce long-term withdrawal syndromes in mammals. However, no studies have focused on the persistent impacts of short-term AMI exposure on teleosts. Here, following exposure to AMI (2.5 and 40 mu g/L) for 7 days (E7), zebrafish were transferred into AMI-free water to recover for 21 days (R21). The behavior, brain neurotransmitters, and brain transcriptional profiles were investigated on E7 and R21. AMI exposure induced persistent hypoactivity (2.5 and 40 mu g/L) and abnormal schooling behavior (40 mu g/L). AMI also induced long-term impacts on the brain serotonin (5-HT), 5-hydroxyindoleacetic acid, norepinephrine, and acetylcholine levels, several of which showed significant correlations with the locomotor activity or schooling behavior. Transcriptional analysis revealed persistent dysregulation in the pathways involved in the circadian rhythm, glycan biosynthesis and metabolism, and axon guidance in brain samples. Twelve genes were predicted as key driver genes in response to AMI exposure, and their significantly differential expression may direct changes across the related molecular networks. Moreover, upregulated brain 5-HT may serve as the central modulator of the persistent AMI pathogenesis in zebrafish. Considering AMI residues in natural waters may temporarily exceed mu g/L, corresponding persistent adverse effects on teleosts should not be ignored.
查看更多>>摘要:Flowback and produced water (FPW) is an end-product of the hydraulic fracturing method of oil and gas extraction that is highly enriched in alkaline earth metals such as strontium (Sr). While Sr concentrations in FPW can exceed toxic thresholds for fish, the accompanying high concentrations of calcium (Ca) in FPW may ameliorate any toxicity. In this study, Sr bioaccumulation and molecular, biochemical, and physiological changes in ionoregulatory endpoints were investigated in rainbow trout (Oncorhynchus mykiss). Exposures were conducted over a 96-h period at Sr concentrations ranging from 1.7 to 1948 mu M, with effects at the highest Sr exposure concentration also separately examined in waters of varying Ca concentration (10 to 958 mu M). Plasma and gill Sr burdens increased as a function of increasing waterborne Sr, and accumulation increased further as water Ca concentrations were lowered. Despite this, there was no consistent, dose-dependent effect of Sr on plasma or gill Ca concentrations, although impacts on plasma and branchial sodium (Na) concentrations were observed. Waterborne Sr significantly inhibited branchial Ca2+-ATPase activity, albeit only at the highest tested Sr concentration (1948 mu M). In exposure treatments where Sr was highly elevated and water Ca was reduced, the hepatic gene expression of Ca signaling receptors beta-2 adrenergic receptor (Adrb2) and inositol-1,4,5-triphosphate receptor-2 (Itpr2) were inhibited, highlighting novel potential pathways of Sr toxicity in rainbow trout. Overall, these data indicate that water Ca has a strong effect on Sr bioavailability, but over an acute exposure period there is limited evidence for an effect of Sr on Ca homeostasis. Although Sr is elevated in effluents associated with the oil and gas industry, the co-occurrence of high Ca concentrations might protect freshwater fish against acute effects related to Sr exposure.