首页期刊导航|Phytochemistry
期刊信息/Journal information
Phytochemistry
Elsevier Science Ltd.
Phytochemistry

Elsevier Science Ltd.

0031-9422

Phytochemistry/Journal PhytochemistrySCICCRIC
正式出版
收录年代

    Plant genetic diversity by DNA barcoding to investigate propolis origin

    Sartori A.G.D.O.Cesar A.S.M.Coutinho L.L.Alencar S.M.D....
    11页
    查看更多>>摘要:? 2022 Elsevier LtdIdentify the botanical origins of a certain type of propolis may be challenging and time demanding, since it involves bee's behavior observation, plant resins collection and chemical analysis. Thus, this study aimed to determine the plant genetic materials in propolis from southern Brazil using the DNA barcoding to investigate their botanical origins, as well as to compare it with the phytochemical composition determined by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) and with the pollinic profile. As principal results, non-native Populus carolinensis Moench (Salicaceae) was almost the only DNA source in some propolis samples, which coincided with the presence of flavonoids typical from poplar exudates. Conversely, other propolis samples had DNA material coming mainly from native plant species, most of them characterized to the species level, although no specific chemical markers from those plants could be identified by UHPLC-HRMS. However, pollen from several plants identified by the DNA barcoding were extracted from some propolis samples. Despite the identification of typical diterpenes, DNA material from Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae), which have been indicated as a major resin source for propolis from preservation areas in southern Brazil, was found in very small abundancies, likely because bees do not drag tissue material containing DNA when collecting resin from this native species. In conclusion, DNA barcoding analysis successfully provided information about the provenance of propolis, although, depending on the plant resin sources, this information is likely to come from pollen.

    Acanthoic acid, unique potential pimaradiene diterpene isolated from Acanthopanax koreanum Nakai (Araliaceae): A review on its pharmacology, molecular mechanism, and structural modification

    Dou J.-Y.Jiang Y.-C.Cui Z.-Y.Lian L.-H....
    11页
    查看更多>>摘要:? 2022 Elsevier LtdAcanthoic acid (AA) is a pimaradiene diterpene isolated from the root bark of Acanthopanax koreanum Nakai (Araliaceae) with a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, anti-diabetes, liver protection, gastrointestinal protection, and cardiovascular protection. In addition, AA promotes its pharmacological effects by targeting liver X receptors (LXRs), nuclear factor-kappa B (NF-κB), Toll-Like Receptor 4 (TLR4) and IL-1 receptor-associated kinase (IRAK) signaling pathways, or AMP-activated protein kinase (AMPK) signaling pathway, etc. Also, some studies focus on the structural modification of AA to improve its pharmacological activities. The review summarizes the pharmacological activities, molecular mechanism, and the structural modification of AA, which might supply information for the development of AA in the future.

    Therapeutic implications and clinical manifestations of thymoquinone

    Yadav D.K.Alam M.Hassan M.I.Hasan G.M....
    15页
    查看更多>>摘要:? 2022 Elsevier LtdThymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action. Additionally, TQ exhibited antitumor activity via the modulation of multiple pathways and molecular targets, including Akt, ERK1/2, STAT3, and NF-κB. The present review highlighted the anticancer potential of TQ. We summarize the anti-cancer, anti-oxidant, and anti-inflammatory properties of TQ, focusing on its molecular targets and its promising action in cancer therapy. We further described the molecular mechanisms by which TQ prevents signaling pathways that mediate cancer progression, invasion, and metastasis.

    Phloroglucinol–meroterpenoids from the leaves of Eucalyptus camaldulensis Dehnh.

    Yangok K.Watanapokasin R.Daus M.Saithong S....
    10页
    查看更多>>摘要:? 2022 Elsevier LtdFourteen undescribed phloroglucinol-meroterpenoids, namely eucalypcamals A–N, were isolated from a CH2Cl2 extract of the leaves of Eucalyptus camaldulensis Dehnh. In addition, from the same extract, twelve known phloroglucinols, three known flavonoids, and four known phenolic compounds were also isolated. The structures of the undescribed compounds were analyzed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and high resolution electrospray ionization mass spectrometry (HRESIMS). The assignments of the absolute configurations were performed by comparing the experimental electronic circular dichroism (ECD) data with the calculated values. Eucalyprobusal E was found to be cytotoxic against HCT116, Jurkat, and MDA-MB-231 cell lines with IC50 values of 17.6, 9.44, and 17.9 μM, respectively. Eucalrobusone F exhibited antibacterial activity against methicillin-resistant S. aureus (MRSA) and S. aureus with minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values of 4/4 μg/mL while euglobal Ia1 showed antifungal activity with MIC/MFC values of 16/16 μg/mL.

    Bioactive pterocarpans from the root of Astragalus membranaceus var. mongholicus

    Xiao L.-M.Zhao Z.-X.Zhou Z.-Q.Zhi H....
    12页
    查看更多>>摘要:? 2022 Elsevier LtdEleven undescribed and three known pterocarpans were isolated and identified from the traditional Chinese medicine “Huang-qi”, Astragali Radix (the root of Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiao). The structures of these pterocarpans were determined using spectroscopic, X-ray crystallographic, quantum chemical calculation, and chemical methods. Pterocarpans, almost exclusively distributed in the family of Leguminosae, are the second largest subgroup of isoflavanoids. However, pterocarpan glycoside number is limited, most of which are glucosides, and only one pterocarpan apioside was isolated from nature. Notably, nine rare apiosyl-containing pterocarpan glycosides were isolated and identified. The hypoglycemic activities of all these compounds were evaluated using α-glucosidase and DPP-IV inhibitory assays respectively, and some isolates displayed the α-glucosidase inhibitory function. The antioxidant activities of all compounds were evaluated using the ORAC and DPPH radical scavenging assays, respectively. All compounds exhibited varying degrees of oxygen radical absorbance capacity, and some compounds displayed DPPH radical scavenging ability.

    Terpenoids from Nardostachys jatamansi and their cytotoxic activity against human pancreatic cancer cell lines

    Ma L.-M.Wang K.Meng X.-H.Wang C.-B....
    10页
    查看更多>>摘要:? 2022 Elsevier LtdFive previously unreported terpenoids, together with fifteen known analogs, were isolated from a methanol extract of the roots and rhizomes of Nardostachys jatamansi. Their structures, including absolute configurations, were elucidated by spectroscopic data and electronic circular dichroism (ECD) spectra analyses, as well as single-crystal X-ray diffraction for crystalline compounds. Structurally, (4R,5S,6S,7R)-1(10)-aristolane-8,9-diacid is a novel 8,9-dicarboxylic acid derivative of aristolane-type sesquiterpenoid. (4R,6S,7R,10S)-10-Hydroxyguaia-1(5)-6,7-epoxy-2-one is an undescribed analogue of nardoguaianone K, with a rare 6,7-epoxide group. (4R,5R,6R,8R)-1(10)-Isonardosinone-8-ol-9-one-7,11-lactone is an isonardosinane-type sesquiterpene bearing a γ-lactone ring. Dinardokanshone F is a rare example of a sesquiterpene dimer from N. jatamansi connected by an oxo bridge. The isolates were evaluated for their cytotoxic activity against four human pancreatic cancer cell lines (CFPAC-1, PANC-1, CAPAN-2 and SW1990). Compound epoxynardosinone exhibited significant cytotoxicity against CAPAN-2 cell lines with IC50 value of 2.60 ± 1.85 μM. 1-Hydroxylaristolone displayed comparable cytotoxicity on CFPAC-1 cell lines (IC50 1.12 ± 1.19 μM), compared to Taxol (IC50 0.32 ± 0.13 μM). 1-Hydroxylaristolone, 1(10)-aristolane-9β-ol, 1(10)-aristolen-2-one, alpinenone, valtrate isovaleroyloxyhydrine and nardostachin displayed stronger cytotoxicity against PANC-1 cell lines with IC50 values ranging from 0.01 ± 0.01 to 6.50 ± 1.10 μM. 1(10)-Aristolane-9β-ol, 10-hydroxyguaia-1(5)-6,7-epoxy-2-one, nardoguaianone K, nardonoxide, epoxynardosinone, 1(10)-isonardosinone-8-ol-9-one-7,11-lactone, valtrate isovaleroyloxyhydrine and nardostachin showed remarkable cytotoxicity against SW1990 cell lines with IC50 values ranging from 0.07 ± 0.05 to 4.82 ± 6.96 μM. Furthermore, the primary mechanistic study of nardostachin demonstrated that it induced cell apoptosis via the mitochondria-dependent pathway, and induced SW1900 cell arrest at G2/M phase.

    Integrative analysis of metabolome and transcriptome reveals the improvements of seed quality in vegetable soybean (Glycine max (L.) Merr.)

    Chen Z.Zhong W.Zhou Y.Ji P....
    15页
    查看更多>>摘要:? 2022 Elsevier LtdVegetable soybean is derived from grain soybean. Seeds of vegetable soybean are bigger, sweeter, and have smoother texture and better flavor than those of grain soybean. To better understand the improvements of seed quality in vegetable soybean, comparative metabolome and transcriptome analyses were performed in the developing seeds between grain (Williams 82) and vegetable (Jiaoda 133) soybeans. A total of 299 differential metabolites were identified between two genotypes, with an increase in free amino acids, carbohydrates, sterols, and flavonoids and a decrease in fatty acid in vegetable soybean. Thousands of differentially expressed genes (DEGs) were identified by transcriptome analysis. DEGs were used for weighted gene co-expression network analysis (WGCNA), yielding 16 co-expression modules. The expression patterns of DEGs within these modules were distinct between two genotypes. Functional enrichment analysis revealed that metabolic pathways, including alanine, aspartate and glutamate metabolism, fatty acid degradation, starch and sucrose metabolism, sucrose transport, and flavonoid biosynthesis, were up-regulated, whereas photosynthesis, arginine biosynthesis, arginine and proline metabolism, glycolysis/gluconeogenesis, and fatty acid biosynthesis were down-regulated in vegetable soybean. Reasonably, the alterations of metabolic pathways corresponding to DEGs partly explained the formation of differential metabolites. These findings provide a better understanding of seed development and breeding improvements of vegetable soybean.

    Bioactive pulvinones from a marine algicolous fungus Aspergillus terreus NTU243

    Hsiao G.Chi W.-C.Chang C.-H.Fu Y.-J....
    7页
    查看更多>>摘要:? 2022 Elsevier LtdMarine fungi are regarded as an under-explored source of structurally interesting and bioactive natural products with the potential to provide attractive lead compounds for drug discovery. In this study, several fungal strains were isolated from marine algae collected from the northeastern coast of Taiwan. In the preliminary antimicrobial screening against bacteria and fungi, the ethyl acetate extract of the fermented products of Aspergillus terreus NTU243 derived from a green alga Ulva lactuca was found to exhibit significant antimicrobial activities. Therefore, bioassay-guided separations of the active principle from liquid and solid fermented products of A. terreus NTU243 were undertaken, which resulted in the isolation and purification of 16 compounds. Their structures were elucidated by spectroscopic analysis to be four previously undescribed aspulvinones S–V as well as twelve known compounds. All the isolates were assessed for anti-inflammatory activity by measuring the amount of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 cells, and aspulvinone V, butyrolactone I, and (+)-terrein inhibited 45.0%, 34.5%, and 49.2% of NO production, respectively, at 10 μM concentration. Additionally, zymography showed that the conditioned medium of THP-1 cells post-LPS challenged significantly enhanced matrix metalloproteinase (MMP)-9-mediated gelatinolysis, and pretreatment with aspulvinones U and V significantly attenuated MMP-9-mediated gelatinolysis by 56.0% and 67.8%, separately.

    Naturally occurring dimeric triterpenoids: Occurrence, chemistry and bioactivities

    Happi G.M.Ntabo V.K.Tcho A.T.Wansi J.D....
    17页
    查看更多>>摘要:? 2022 Elsevier LtdThe triterpenes represent one of the most reported subclasses of specialized metabolites from the plant kingdom. They play a key role in the protection of plants and their metabolism in addition to displaying a high structural diversity and large scale of biological activities. The scaffold can undergo several reactions like oxidation or substitution at different positions of the skeleton leading to the formation of several types of compounds. More specifically, triterpene dimer is a small group of compounds found in nature (from plants precisely). Until 2021, the chemical and pharmacological works reported in the literature indicated the identification of 90 natural dimeric triterpenes and 11 synthetic derivatives from 19 plants species and very few of them have been biologically evaluated for their antibacterial, antioxidant, antiproliferative or molluscicide activities. This review aims to compile the literature on the occurrence, chemistry and biological activities of the triterpenoid dimers. To attend this goal, a literature survey has been done in a number of online libraries including Scifinder, PubMed, Web of Science and Google Scholar using keywords terpene, triterpene, dimer, celastroloid without language restriction. This paper provides the easiest access to the information on triterpene dimers for readers and researchers in view to enhancing the continuity of research works on this topic.

    Triterpenoids as bivalent and dual inhibitors of acetylcholinesterase/butyrylcholinesterase from the fruiting bodies of Inonotus obliquus

    Wei Y.-M.Yang L.Wang H.Cai C.-H....
    12页
    查看更多>>摘要:? 2022 Elsevier LtdInonotus obliquus, an edible and medicinal mushroom parasitic on birches, has been used in human diet and for traditional therapies in the high latitude regions of Europe and Asia for a long time. Our phytochemical study of this fungus led to the identification of fourteen triterpenoids including four undescribed ones, and two pairs of undescribed phenolic enantiomers. The undescribed compounds were elucidated by extensive spectroscopic analysis including 1D and 2D NMR and HRESIMS, quantum chemical NMR and ECD calculations, as well as single-crystal X-ray diffraction analysis. Bioassays revealed that eight compounds showed dual inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) with IC50 values ranging from 2.40 ± 0.05 to 28.72 ± 0.46 μM, while 3β-hydroxy-lanosra-8,24-dien-21-al and trametenolic acid only presented BuChE inhibitory activities with IC50 values of 22.21 ± 1.01 and 7.68 ± 0.13 μM, respectively. In the kinetic studies, the most active three compounds acted as non-competitive inhibitors for both cholinesterases. Furthermore, molecular docking simulations revealed that three compounds demonstrated dual-sites bounding to AChE/BuChE. These triterpenoids emerged as bivalent and dual inhibitors of AChE/BuChE and could be effective drug candidates to prevent and treat Alzheimer's disease in the future.