首页期刊导航|Talanta
期刊信息/Journal information
Talanta
Pergamon Press
Talanta

Pergamon Press

0039-9140

Talanta/Journal TalantaSCIISTPEIAHCI
正式出版
收录年代

    An intramolecular DNAzyme-based amplification for miRNA analysis with improving reaction kinetics and high sensitivity

    Yang, ZizhongHuang, YuanweiXie, BaopingLi, Min-Min...
    7页
    查看更多>>摘要:Sensitive, specific and rapid methods for detecting microRNAs (miRNAs) play critical roles in disease diagnosis and therapy. Enzyme-free amplification techniques based on DNAzyme assembly have recently been developed for the highly specific miRNA analysis. However, traditional DNAzyme-based assembly (free DNAzyme) am-plifiers is mainly dependent on the target-induced split DNAzyme fragments to assemble into activated DNAzyme structures, which have made a compromise between the sensitivity and specificity due to the random diffusion of dissociative probes in a bulk solution with poor kinetics. Herein, based on a rationally designed DNA probe, we developed an intramolecular DNAzyme assembly (intra-DNAzyme) method to overcome these challenges. The miR-373 is used as model analyte for our current proof-of-concept experiments. Compared with the free-DNAzyme method, our method showed significantly improved analytical performance in terms of dynamic range, assay sensitivity and speed. This method can detect miR-373 specifically with a detection limit as low as 4.3 fM, which is about 83.7 times lower than the previous free-DNAzyme method. This intra-DNAzyme strategy would be of great value in both basic research and clinical diagnosis.

    A microfluidic approach for rapid and continuous synthesis of glycoprotein-imprinted nanospheres

    Li, QianjinWang, FenyingLi, JianlinJin, Yu...
    9页
    查看更多>>摘要:Many strategies have been reported for the preparation of glycoproteins imprinted polymers, but they take a long time and cannot produce imprinted polymers continuously. Herein, a microfluidic synthesis approach was developed to make glycoproteins imprinted nanospheres rapidly and continuously. By using ovalbumin as a model template and a synthesized phenylboronic acid-tagged silane reagent as the functional monomer, the synthetic conditions including the polymerization contents, the flow rate and the microfluidic reactor size were comprehensively studied. Under the optimized conditions, the glycoprotein imprinted nanospheres could be synthesized rapidly (<2 h), and exhibited high specificity with cross-reactivity factors of 1.3 (ovotransferrin), +infinity (horse-radish peroxidase), 5.1 (beta-lactoglobulin) and 101 (bovine serum albumin). The kinetic and equilib-rium binding behaviors, reusability and potential applications of the glycoprotein imprinted nanosphere were investigated. Such microfluidic synthesis strategy can be easily extended to produce other target glycoproteins imprinted nanospheres, as well as non-glycoproteins by using suitable functional monomers.

    Exploring breath biomarkers in BLM-induced pulmonary fibrosis mice with associative ionization time-of-flight mass spectrometry

    Wu, XiaoxueLi, ZhenShu, JinianLu, Zhongbing...
    8页
    查看更多>>摘要:Pulmonary fibrosis (PF) is a common but fatal disease that threatens human health worldwide. Developing effective diagnostic methods is of great importance for the early detection of PF in patients. In this study, bleomycin (BLM) was used in mice to mimic idiopathic pulmonary fibrosis (IPF). The exhaled breath of BLMinduced PF, PF plus DDAH1 overexpression, and healthy control mice were analyzed in real-time using a newly developed associative ionization time-of-flight mass spectrometry method (AI-TOFMS), which is uniquely sensitive, especially to oxygenated volatile organic compounds (VOCs). Multivariate data analyses and discriminant modeling analyses revealed that four exhaled compounds, i.e., acrolein, ethanol, nitric oxide, and ammonia, had a strong correlation with PF symptoms. An Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) score plot showed an excellent separation between these three groups. The area under the receiver operating characteristic (ROC) curve for these four compounds distinguished PF mice from healthy controls at 0.989. In addition, the degrees of acute inflammation and fibrosis were assessed with Hematoxylin and Eosin (H&E) staining and Masson's Trichrome staining. Finally, combined with pathological characteristics and mRNA expression levels, the formation of the above-mentioned volatile compounds was explored. The obtained experimental results indicated that these four breath compounds, acrolein, ethanol, nitric oxide, and ammonia, were potential exhaled biomarkers for pulmonary fibrosis.

    Disposable biosensor based on novel ternary Ru-PEI@PCN-333(Al) self-enhanced electrochemiluminescence system for on-site determination of caspase-3 activity

    Luo, WeiweiChu, HongyuWu, XinzhaoMa, Pinyi...
    8页
    查看更多>>摘要:The number of death due to cancer-related diseases each year is at the alarming level and is constantly growing. Tools that can effectively and conveniently detect cancer cell apoptosis can play a significant role in cancer research, cancer therapy, and other related industries. Herein, we fabricated, for the first time, an ultrasensitive, disposable, self-enhanced off-on electrochemiluminescence (ECL) biosensor based on ternary Ru-PEI@PCN-333 (Al) system to determine caspase-3 activity, the biomarker of apoptosis. The biosensor had a low detection limit of 0.017 pg/mL and was able to enhance the ECL emission and stability. A solid-state (SS) ECL strategy was adopted to overcome the relatively weak ECL emission due to the long distance between electro-chemiluminophore and electrode surface. The analysis requires only one incubation step, which can significantly reduce the operational complexity and time. The biosensor had higher sensitivity, and the off-on ECL mode was achieved using caspase-3 as a switch. The on-site and rapid detection capability of the biosensor was achieved by the introduction of disposable screen-printed electrodes (SPEs). This study lays a foundation for the development of more advanced, ingenious, portable and reliable ECL devices for biosensing not only caspase-3, but also other bioanalytes.

    Development of an LC-MS-based method to study the fate of nanoencapsulated pesticides in soils and strawberry plant

    Wang, PeiyingGalhardi, Juliana A.Liu, LanBueno, Vinicius...
    8页
    查看更多>>摘要:The increased production and use of nanopesticides will increase the likelihood of their exposure to humans and the environment. In order to properly evaluate their risk, it will be necessary to rigorously quantify their concentrations in major environmental compartments including water, soil and food. Due to major differences in the characteristics of their formulation, it is unclear whether analytical techniques that have been developed for conventional pesticides will allow quantification of the nano-forms. Therefore, it is necessary to develop and validate analytical techniques for the quantification of nanopesticides in foods and the environment. The goal of this study was to validate a method for analyzing the active ingredients of two pesticides with different physicochemical properties: azoxystrobin (AZOX, a fungicide, log K-ow 3.7) and bifenthrin (BFT, an insecticide, log K-ow 6.6) that were applied to agricultural soils, either as a conventional formulation or encapsulated in nanoparticles (either Allosperse (R) or porous hollow nSiO(2)). Pesticide-free strawberry plants (Fragaria x ananassa) and three different agricultural soils were spiked with the active ingredients (azoxystrobin and bifenthrin), in either conventional or nano formulations. A modified QuEChERS approach was used to extract the pesticides from the strawberry plants (roots, leaves and fruits) and a solvent extraction (1:2 acetonitrile) was employed for the soils. Samples were analyzed by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry in order to determine method detection limits, recoveries, precision and matrix effects for both the "conventional" and nanoencapsulated pesticides. Results for the modified method indicated good recoveries and precision for the analysis of the nanoencapsulated pesticides from strawberries and agricultural soils, with recoveries ranging from 85 to 127% (AZOX) and 68-138% (BFT). The results indicated that the presence of the nanoencapsulants had significant effects on the efficiency of extraction and the quantification of the active ingredients. The modified analytical methods were successfully used to measure strawberry and soil samples from a field experiment, providing the means to explore the fate of nanoencapsulated pesticides in food and environmental matrices.

    High performance electrochemical method for simultaneous determination dopamine, serotonin, and tryptophan by ZrO2-CuO co-doped CeO2 modified carbon paste electrode

    Fazl, FaribaGholivand, Mohammad Bagher
    11页
    查看更多>>摘要:In this research, a paste containing ZrO2-CuO-CeO2 ternary nanocomposite and graphene (Gr) was used in constructing a carbon paste sensor for monitoring biomolecules including dopamine (Dop), serotonin (Ser) and tryptophan (Trp). The scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and Xray diffraction (XRD) were utilized for ZrO2-CuO-CeO2 ternary nanocomposite characterization. The obtained data show that, the ZrO2-CuO-CeO2/Gr and synergetic effect of using these three-metal oxide nanoparticles, could effectively improve the electron transfer kinetic and exhibit a high electrocatalytic activity, making it serve as a powerful tool for biomolecules analysis. The differential pulse (DP) and cycle voltammetry (CV) methods were applied for investigating electrochemical treatment of the analytes. In comparison to all of the previous voltammetric reports, this research has the lowest detection limit and widest linear range. The calibration curves in the optimum conditions were linear over the range of 0.008-7.2 and 7.2-185 mu M for Dop, 0.008-7.9 and 7.9-205 mu M for Ser and 0.009-8.6 and 8.6-194 mu M for Trp. The calculated limit of detection (LOD) was 3.09, 3.49 and 5.32 nM for Dop, Ser and Trp, respectively. The applicability of this sensing device was tested by monitoring Dop, Ser and Trp in the human urine and plasma samples. The recovery percentage of the analysis in the real samples was between 95.6 and 104.74; also, the data of determination of Dop, Ser and Trp with ZrO2-CuO-CeO2/Gr/CPE was well close to HPLC data. The obtained result demonstrates that the ZrO2-CuO-CeO2/Gr/CPE has good selectivity, stability, reproducibility, and repeatability, and can be used for the routine analysis of Dop, Ser and Trp.

    MUC1 detection and in situ imaging method based on aptamer conformational switch and hybridization chain reaction

    Zhou, YunShen, MinzheZhao, DongHu, Haihong...
    7页
    查看更多>>摘要:Mucin 1 (MUC1) overexpression in tumor cells is related to various cancers, including breast, stomach, and lung cancer. MUC1 detection and imaging are important for cancer localization in tissue sections to support histo-pathological diagnosis. In this study, we developed a simple, enzyme-free MUC1 detection and in situ imaging method. Three hairpin probes, Apt-trigger, HP1-FAM, and HP2, were designed for MUC1 recognition and hy-bridization chain reaction (HCR). The Apt-trigger probe was composed of two sequences: the MUC1 aptamer and HCR trigger sequence. The 5' end of the HP1-FAM probe was modified with a FAM signal molecule. In the presence of MUC1, the aptamer sequence is activated and bound to MUC1, which opens the hairpin structure. Then, the trigger sequence gets exposed and, complementary to HP1-FAM, triggers a continuous HCR process. This method was successfully used to detect MUC1 of 200 pM-25 nM and MUC1 in situ imaging in specific cells, such as human breast carcinoma (MCF-7) and human colon cancer (HT-29) cells.

    Ratiometric Electrochemical Immunosensor Based on L-cysteine Grafted Ferrocene for Detection of Neuron Specific Enolase

    Huang, XinyiMiao, JuncongFang, JinglongXu, Xiaoting...
    8页
    查看更多>>摘要:In order to realize the ultra sensitive detection of Neuron specific enolase (NSE) in human serum, we chose electrochemical immunosensor as a simple analytical method. During the experiment, we found that the peak value signals of Cu-MOFs-Au and Fc-L-Cys were significantly changed at -0.20 V and 0.20 V potentials by DPV. So a ratiometric electrochemical immunosensor for quantitative analysis of NSE was prepared for Cu-MOFs-Au as the electrode sensing surface and Fc-L-Cys as the label of Ab2. The data and performances of the immunosensor were tested and analyzed by DPV. Cu-MOFs not only provide the required signal for the immunosensor, but also have a large specific surface area, which can provide more sites for the placement of Au nanoparticles. L-cysteine (L-Cys) can prevent a large amount of Fc-COOH leakage, so that Fc+ can stably provide another required signal. With the beefing up of NSE concentration, redox peak of Cu-MOFs-Au decreased and that of Fc-L-Cys raised. The ratio (Delta I=Delta ICu/Delta IFc) of two different signals was linear with the logarithm of NSE concentration in a certain value range. In brief, with the optimized experimental conditions, the immunosensor showed excellent performance in the concentration range of 1 pg/mL to 1 mu g/mL, and the detection limit was 0.011 pg/mL. Compared with other immunosensors, it showed an unexpected high sensitivity. This method also provided a new idea for the ultra sensitive quantitative detection of other biomarkers.

    Design considerations of aptasensors for continuous monitoring of biomarkers in digestive tract fluids

    Salama, RachelArshavsky-Graham, SofiaSella-Tavor, OsnatMassad-Ivanir, Naama...
    10页
    查看更多>>摘要:We present a porous Si (PSi)-based label-free optical biosensor for sensitive and continuous detection of a model target protein biomarker in gastrointestinal (GI) tract fluids. The biosensing platform is designed to continuously monitor its target protein within the complex GI fluids without sample preparation and washing steps. An oxidized PSi Fabry-Pe ' rot thin films are functionalized with aptamers, which are used as the capture probes. The optical response of the aptamer-conjugated PSi is studied upon exposure to unprocessed GI fluids, originated from domestic pigs, spiked with the target protein. We investigate biological and chemical surface passivation methods to stabilize the surface and reduce non-specific adsorption of interfering proteins and molecules within the GI fluids. For the passivated PSi aptasensor we simulate continuous in vivo biosensing conditions, demon-strating that the aptasensor could successfully detect the target in a continuous manner without any need for surface washing after the target protein binding events, at a clinically relevant range. Furthermore, we simulate biosensing conditions within a smart capsule, in which the aptasensor is occasionally exposed to GI fluids in flow or via repeated cycles of injection and static incubation events. Such biosensor can be implemented within ingestible capsule devices and used for in situ biomarker detection in the GI tract.

    Surface plasmon resonance aptasensor for Brucella detection in milk

    Dursun, Ali D.Borsa, Baris A.Bayramoglu, GulayArica, M. Yakup...
    7页
    查看更多>>摘要:A Surface Plasmon Resonance (SPR) aptasensor was developed for the detection of Brucella melitensis (B. melitensis) in milk samples. Brucellosis is a bacterial zoonotic disease with global distribution caused mostly by contaminated milk or their products. Aptamers recognizing B. melitensis were selected following a whole bacteria-SELEX procedure. Two aptamers were chosen for high affinity and high specificity. The high affinity aptamer (B70 aptamer) was immobilized on the surface of magnetic silica core-shell nanoparticles for initial purification of the target bacteria cells from milk matrix. Another aptamer, highly specific for B. melitensis cells (B46 aptamer), was used to prepare SPR sensor chips for sensitive determination of Brucella in eluted samples from magnetic purification since direct injection of milk samples to SPR sensor chips is known for a high background unspecific signal. Thus, we integrated a quick and efficient magnetic isolation step for subsequent instant detection of B. melitensis contamination in one ml of milk sample by SPR with a LOD value as low as 27 +/- 11 cells.