首页期刊导航|催化学报
期刊信息/Journal information
催化学报
催化学报

林励吾

月刊

0253-9837

sales_journal@mail.sciencep.com

0411-84379240

116023

辽宁省大连市中山路457号(大连110信箱)

催化学报/Journal Chinese Journal of CatalysisCSCD北大核心CSTPCDEISCI
查看更多>>本刊主要刊登催化领域有创造性,立论科学、正确、充分,有较高学术价值的论文,反映我国催化学科的学术水平和发展方向,报道催化学科的科研成果与科研进展;跟踪学科发展前沿,注重理论与应用相结合,促进国内外学术交流与合作。内容主要包括多相催化、均相络合催化、生物催化、光催化、电催化、表面化学、催化动力学以及有关边缘学科的理论和应用的研究成果。本刊以催化学术领域从事基础研究和应用开发的科研人员及工程技术人员为读者对象,也可供大专院校有关催化专业的本科生及研究生参考。
正式出版
收录年代

    界面电子扰动促进的C-H键活化

    王哲王春鹏陆冰陈志荣...
    130-138页
    查看更多>>摘要:丙烯是重要的化工原料,广泛用于生产聚丙烯、环氧丙烷、丙烯醛、丙烯腈和丙酮等重要化工中间体以及合成树脂、合成橡胶和许多精细化工产品.目前生产丙烯的方法主要有石脑油裂解、催化流化裂化、丙烷脱氢、烯烃复分解和甲醇制烯烃等.其中丙烷脱氢因具有较高的丙烯选择性和较低的原料成本而备受关注,尤其是页岩气在全球的大量发现和开采,使得丙烷的原料成本持续下降,丙烷脱氢技术的迅速发展,但高效催化剂研发成为提升生产效率的关键.商业Pt基催化剂通常采用合金化的手段优化Pt颗粒的表面结构和中间体的吸附状态,进而获得较好的催化性能,但金属助剂的引入在一定程度上会弱化Pt位点的C-H键活化能力.针对该问题,本文从惰性C-H键活化角度出发,揭示了一种新的C-H键界面活化机制.通过金属-载体强相互作用诱导形成Pt-Ga2O3反向界面结构,密度泛函理论计算结果表明,Pt与Ga2O3之间存在强烈的电子扰动现象,使得界面处O位点表现出类金属的电子特性,在费米能级附近存在连续的电子态,这与Ga2O3本身离散性电子态呈明显对比,显示出Pt-Ga2O3反向界面结构的独特性质,使得界面O位点表现出极强的H吸附能和C-H键活化能力,其催化丙烷分子中亚甲基C-H键断裂的活化能仅为0.21 eV,远低于Pt(111)晶面的0.64 eV.原位红外光谱结果表明,反应过程中该界面结构会产生大量的羟基.根据过渡态的精细结构可知,反应位点是通过抓取H原子并随即稳定产生的C自由基完成C-H键的断裂,分析结果表明,H吸附能与反应能垒有着紧密的关联,而Pt-Ga2O3反向界面结构中,Pt基底赋予界面O位点独特的电子结构,同时也可以作为电子受体接收H传递的电子,从而表现出极强的H结合能和C-H键活化能力,其C-H断裂能垒要远低于各类Pt位点.进一步的分析表明,首个C-H键在Pt-O界面位发生断裂后,所形成的H物种会由O位点溢流至Pt颗粒表面,最终以H2形式释放,留下的2-丙基碎片再经历甲基的C-H键断裂、H溢流、脱氢等步骤形成丙烯分子.而Pt颗粒表面的Ga2O3团簇也起到分割表面位点的作用,促进丙烯脱附的同时,有效弱化C-C键的断裂趋势,减少裂解副产物,生成丙烯的选择性超过99%.综上所述,本文构建的Pt/Ga-Al2O3界面位催化剂在丙烷脱氢反应中的性能要明显优于Pt/Al2O3以及工业常用的PtSn/Al2O3催化剂,揭示了一种全新的C-H键活化策略,并探究其中的化学机制,既可以深化对界面协同催化的理解,又可以为高性能催化剂的设计提供借鉴和指导.

    界面催化碳氢键活化丙烷脱氢电子效应

    通过NiMo氧化物-CoMo氧化物混合物衍生催化剂中的界面相互作用促进甲醇到甲酸盐的电催化氧化

    齐宴宾朱以华江宏亮李春忠...
    139-149页
    查看更多>>摘要:为应对气候与环境变化及适应未来工业生产需求,近年来,H2O,CO2以及有机小分子等的电催化还原或氢化反应受到广泛的关注.但阳极析氧反应(OER)的缓慢动力学过程导致反应能耗高,限制了其实际应用.近年来,研究人员采用热力学上更有利的亲核氧化反应(NOR)代替OER,并与阴极半反应耦合,进而降低总体能耗,同时在阳极获得高附加值产物.其中,设计高效、稳定、易放大制备的催化剂是实现NOR工业化应用的关键.本文采用简便且易于规模化生产的策略制备电催化剂,并用于甲醇氧化反应(MOR).首先,采用沉淀法制备镍钼氧化物水合物和钴钼氧化物水合物;随后,将两种水合物按一定比例物理混合得到MOR催化剂.实验结果表明,混合物中的镍钴两种组分在含有KOH的碱性电解液中快速脱钼并转变为氢氧化物.当混合物中NiMo氧化物与CoMo氧化物的质量比为1∶1(记为Ni50Co50-m)时,材料表现出最佳的催化活性.Ni50Co50-m在1 mol L-1 KOH+1 mol L-1甲醇电解液中达到100 mA cm-2电流密度仅需约1.51 V施加电位,活性及阳极反应选择性均远远高于单一组分.相比于化学共沉淀法所制备的NiCoMo氧化物,Ni50Co50-m表现出更好的稳定性.为明确混合物催化性能比单一组分材料大幅提高的原因,通过现场原位电化学阻抗谱和工况原位拉曼光谱对单一组分催化剂在服役条件下的反应界面以及催化剂结构演变进行研究.结果表明,单一镍组分催化剂在MOR过程中会被部分氧化为NiOOH,但是由于镍组分导电性很差,电荷转移微弱,因此催化性能较差.单一钴组分催化剂在MOR过程中表面被氧化为CoOOH,OER和MOR均发生在CoOOH表面,但是钴组分的本征活性并不强且对竞争反应OER的选择性较高.通过比较真实混合物(Ni50Co50-m)以及镍钴组分间无接触情况下的原位阻抗谱响应,证明了镍与钴之间存在相互作用.混合物中镍钴组分接触界面间的相互作用包括以下两个方面:一方面,钴组分在一定的外加电压下被氧化为导电良好的CoOOH,其作为混合物中的电荷传输媒介,激活更多的镍位点参与到催化剂的电氧化过程中,增大了Ni2+/Ni3+氧化还原物种的覆盖度,为催化活性物种OH*的形成提供了更多位点;另一方面,镍钴组分之间的相互作用影响了Ni2+的电氧化行为,Ni2+的氧化电位明显下降,钴组分的引入降低了 Ni3+-O键的电子云密度,使得OH-向Ni3+位点的亲核进攻变得更加有利,进而促进了 OH*的产生及其与镍位点的紧密结合,从而提高了 MOR的活性和选择性.综上,本文通过混合物中镍与钴组分间的界面相互作用提升了催化剂对MOR的催化活性.该混合增强策略同样适用于其他NOR(如乙醇氧化反应、乙二醇氧化反应等)以及其他镍基催化剂(如氢氧化镍、硫化镍).本工作为简便、高效和放大制备NOR催化剂提供了新思路.

    亲核氧化反应电催化甲醇电催化氧化放大制备界面相互作用

    调控等级孔UiO-66(Ce)中Ru纳米团簇的电子态、丰度和微环境用于高效催化双环戊二烯加氢

    李如硕汪琳梦周佩云林璟...
    150-165页
    查看更多>>摘要:催化石油加工副产物双环戊二烯(DCPD)加氢得到的四氢双环戊二烯(THDCPD)是一种高能量密度燃料,在航空航天领域具有重要应用价值.传统DCPD加氢催化剂在反应中存在使用寿命短和重复使用性差等问题.金属有机框架(MOFs)作为一种周期有序多孔材料,有望成为用于DCPD加氢的新型高效催化剂.通过引入介孔或大孔来构建等级孔MOFs(HP-MOFs),可以克服微孔对DCPD等大客体分子的扩散限制,促进底物分子向HP-MOFs内部活性位点转移.此外,加入合适的金属组分(如价格相对低廉的Ru)到HP-MOFs,可以使金属的原子利用率最大化,优化活性位点的分散性和稳定性,进一步协同提升催化性能.因此,发展HP-MOFs与金属组分间异质结构的调控方法,建立构效关系至关重要.本文采用软模板法制备了HP-UiO-66(Ce),设计和构建了介孔UiO-66(Ce)负载钌纳米簇(NCs)异质材料,并用于催化DCPD加氢反应.X射线衍射(XRD)、扫描电镜、透射电镜、氮气吸脱附和DCPD加氢结果表明,与微孔和大孔UiO-66(Ce)相比,介孔UiO-66(Ce)独特的结构在催化剂制备和DCPD加氢中显示出独特的优势:(1)具有配体缺失缺陷的Ce-oxo簇促进了Ru3+的有效吸附;(2)微孔框架的约束作用实现了Ru NCs的有效固定和均匀分散,抑制了Ru NCs的团聚和流失,保证了催化剂的稳定性;(3)介孔结构为DCPD和H2底物分子提供了高效的传质通道,也有利于暴露更多的活性中心,促进DCPD与H2底物分子的吸附和活化.此外,通过优化合成条件,可以精确控制Ru NCs活性位点的电子结构、分布和微环境.XRD和X射线光电子能谱结果表明,Ru NCs和Meso-UiO-66(Ce)之间Ru-O-Ce强异质界面的形成导致了晶格畸变,Ru@Meso-UiO-25-200中Ru0和M-O占比最多,主要来源于还原处理得到的Ru NCs和Ru-O-Ce异质界面中Ru-O键的形成,且样品中Ru0的含量与Ru3+吸附温度呈反相关趋势,与样品还原温度呈正相关趋势.密度泛函理论计算结果表明,金属Ru0作为主要活性位点,极大地促进了DCPD和H2的吸附,并激活了催化剂上吸附的DCPD的C=C键,促进了DCPD两个C=C双键的"共吸附"和连续化加氢过程.因此,介孔UiO-66(Ce)和Ru NCs异质结构的构建,在低温(60 ℃)下仅用35 min就实现了DCPD催化加氢得到四氢双环戊二烯(THDCPD)(100%转化率和~100%选择性),且循环使用6次后性能基本保持不变,表现出较好的活性和稳定性.综上,本文通过等级孔和异质结构的构筑,证明了介孔结构在大底物分子催化反应中的结构优越性,并进一步揭示了催化剂合成条件、结构和性能之间的关系,为理性设计新型MOFs基功能材料在催化、吸附、储能等方面的应用提供新思路.

    等级孔UiO-66(Ce)Ru纳米簇双环戊二烯微环境调控

    Co-YPO4双功能催化剂促进乙醇高值转化制丁二烯

    周百川李文翠王嘉孙丹卉...
    166-175页
    查看更多>>摘要:丁二烯是重要的化工原料,主要用于生产树脂、合成橡胶、丁二醇和己二腈等大宗化学品,还可以用于制备蒽醌、四氢苯酐等精细化学品.目前,工业上制备丁二烯的方法主要是乙烯副产抽提法.近年来,随着生物乙醇技术大力发展,催化乙醇制丁二烯成为很有吸引力的生产丁二烯的路线之一.目前催化乙醇制丁二烯的催化剂种类较多,合理设计具有活性位点结构和功能的催化新材料是提升催化剂活性的关键.稀土金属元素如Y,La和Ce等具有独特的电子层结构,并且具有中等强度的Lewis酸性,本文尝试将稀土磷酸盐与具有乙醇脱氢活性的过渡金属位点结合起来,设计过渡金属改性的稀土磷酸盐催化剂并用于乙醇转化制丁二烯.本文开发了Co-YPO4双功能催化剂,应用于乙醇转化制丁二烯反应,所制材料表现出较高的催化活性与稳定性.在YPO4催化剂上,乙醇主要发生脱水反应,生成大量的乙烯和乙醚,且丁二烯选择性不超过5%;而在Co-YPC4催化剂上,乙醇转化产物分布出现明显改变,丁二烯选择性增加.在乙醇重时空速和反应温度分别为1.0gC2H5OH·gCat-1·h-1和350 ℃的条件下,乙醇转化率为78.2%,丁二烯选择性为68.5%.原位紫外-可见漫反射光谱、X射线光电子能谱以及H2-程序升温还原表征结果表明,Co2+中心与PO43-基团存在强的配位相互作用,形成稳定且高度分散的[Co-O-P]物种.通过NH3-程序升温脱附(TPD)和吡啶探针分子吸附红外对YPO4和Co-YPO4进行酸性表征,结果表明,YPO4和Co-YPO4表面均是典型的Lewis酸性位点;结合CO2-TPD表征发现,Co2+与YPO4表面部分Y3+位点发生置换,即引入适量的Co会减弱酸性同时增强表面碱性.进一步通过停留时间、乙醇程序升温表面反应和原位乙醇吸附反应漫反射红外光谱测试对反应机理进行详细研究.结果表明,乙醇首先在Co2+位发生脱氢生成乙醛和H2,随后乙醛迁移至Y3+位点吸附活化,两分子乙醛依次发生C-C偶联、加氢以及脱水反应生成丁二烯.动力学测试结果表明,乙醇脱氢是整个反应过程的关键步骤,整体反应路径如下:乙醇→乙醛→2-丁烯醛→2-丁烯醇→ 丁二烯.综上所述,以乙醇作为平台分子合成丁二烯能够丰富可持续发展的新能源结构体系.本文揭示了磷酸根基团通过配位作用稳定Co2+物种,Co2+和Y3+位点协同催化乙醇选择性生成丁二烯,为乙醇高值转化催化剂设计提供了新思路.

    乙醇丁二烯脱氢碳碳偶联磷酸盐

    构筑富含磷空位缺陷的磷化钯催化剂实现高效和抗CO毒化的碱性氢氧化反应

    杨玉婷石路岩梁沁睿刘奕...
    176-187页
    查看更多>>摘要:碱性阴离子交换膜燃料电池(AEMFCs)可以直接将氢的化学能转化为电能,被认为是新兴绿色氢经济的基石技术.但其阳极氢氧化反应(HOR)动力学缓慢,严重依赖于Pt基催化剂.由于Pt基催化剂极易被CO毒化、动力学过程复杂以及价格昂贵,极大限制了其商业化应用.因此,亟需开发高效、稳定和抗CO毒化能力强的新型HOR催化剂.Pd具有与Pt相似的氢键结合能,并且比Pt储量丰富,有望成为实现HOR的候选催化剂.然而,Pd的本征催化活性和Pt相比仍有很大差距.近年来,磷化钯因具有功能多样性和高催化活性被广泛关注.此外,缺陷工程可以有效调控催化剂的表面结构,改善中间体的吸附强度,提高催化剂的催化活性.因此,构建富含缺陷的磷化钯催化剂有望提高其HOR的性能.然而,该方向研究较少,反应机理尚不清楚.因此,阐明空位缺陷对于提高磷化钯催化剂HOR性能的作用机制,对促进AEMFCs电催化反应具有重要意义.本文通过溶胶-凝胶法以及低温磷化策略合成了一种碗状半球结构的富含磷空位Pd3P@C(Vp-Pd3P@C)催化剂,并用于碱性HOR.在磷化过程中,通过调整Pd前驱体和磷源比例以及煅烧温度,在碳碗状半球载体上合成具有不同晶相组成(Pd/Pd3P@C,Pd3.20P12@C,Pd3P@C,和Pd5P2@C)的PdxPy@C催化剂.扫描电镜和透射电镜证实了催化剂为碗状半球形貌.利用电子顺磁共振波谱研究了PdxPy@C催化剂的磷空位浓度,结果表明,Pd/P比例为1∶3时,在350 ℃下煅烧得到的Vp-Pd3P@C具有最高的磷空位浓度.X射线光电子能谱证实了磷空位促进了d-p轨道杂化,增强了Pd和磷之间的电子相互作用.电化学测试结果表明,Vp-Pd3P@C具有最高的HOR性能,Vp-Pd3P@C在50 mV的质量活性为1.66 mAμgPd-1,交换电流密度为3.2 mA cm-2,优于Pd3P(0.45 mA μgPd-1,1.78 mA cm-2)和商业Pt/C(0.3 mA μgPt-1,2.29 mA cm-2).同时,该催化剂在50 mV的电位下能稳定运行20 h.此外,即使在CO浓度高达1000ppm时,Vp-Pd3P@C催化剂仍表现出较好的HOR活性.紫外光电子能谱证实了Vp-Pd3P@C中的Pd原子呈现缺电子状态,这不利于Pd 4d轨道对CO 2π*轨道的电子反馈,降低了Pd和CO的键合强度,进而减弱了Pd对CO分子的吸附,从而增强了其抗CO中毒的能力.密度泛函理论计算结果表明,相较于磷空位浓度较少的Pd3P@C催化剂,富含磷空位缺陷的Vp-Pd3P@C催化剂能够优化和平衡反应中间体(Hads和OHads)的吸附强度,使速率决定步骤从H2O*的解吸转换到H2O的形成,促进了Volmer反应(Hads+OHads → H2O+2*sites)的进行,进而提升了催化活性.系统实验和表征结果表明,Vp-Pd3P@C较好的HOR性能可归因于以下3个因素:(1)空心碗状结构大大地增加了固-液-气三相接触点,加速了HOR的传质过程;(2)磷空位产生的局部反应活性和有利的电子结构优化了Hads和OHads的吸附强度,极大地促进了Volmer步骤;(3)丰富的磷空位打破了原有的周期性晶体结构,形成了新的电子结构,有效地抑制了电子从Pd4d轨道到CO 2π*轨道的反馈,提高了 Vp-Pd3P@C对CO的耐受能力.综上,本文通过缺陷工程策略调控了 Vp-Pd3P@C中活性位点与HOR关键中间体的相互作用,明确了空位缺陷浓度与HOR活性之间的构效关系.并从碱性HOR反应机理,CO分子与金属催化剂的轨道相互作用以及结构设计三个方面总结了高效和稳定的HOR催化剂的设计原则.目前,由于界面环境的复杂性和缺乏原位技术,催化剂表面上痕量中间体的光谱信息难以获得,未来可在开发原位技术监测HOR过程中间体和催化剂的组分变化方面做出更多的努力,以促进AEMFCs的商业化应用.

    氢氧化反应CO耐受性磷空位Vp-Pd3P@C碗状半球