查看更多>>摘要:Three Mw>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the Mw7.6 Sand Point strike-slip earthquake on October 19,2020,and the Mw8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.
查看更多>>摘要:In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the In-ternational GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.
查看更多>>摘要:Different from other normal modes of the Earth's free oscillation that depend on all the six components (Mrr,Mtt,Mpp,Mrt,Mrp,and Mtp)of the centroid moment tensor,the amplitudes of the radial modes depend on the Mrr component(e.g.,scalar moment(M0),dip(δ),and slip(λ))and hypocenter depth of the focal mechanism,and hence can be easily used to constrain these parameters of the focal mechanism.In this study,we use the superconducting gravimeter(SG)records after the 2011 Tohoku earthquake to analyze the radial modes 0S0 and 1S0.Based on the solutions of the focal mechanism provided by the GCMT and USGS,we can obtain the theoretical amplitudes of these two radial modes.Comparing the theoretical amplitudes with the observation amplitudes,it is found that there are obvious differences between the former and the latter,which means that the GCMT and USGS focal mechanisms cannot well represent the real focal mechanism of the 2011 event.Taking the GCMT solution as a reference and changing the depth and the three parameters of the Mrr moment,the scalar moment(M0)and the dip(δ)have significant influences,but the effects of the slip(λ)and the depth are minor.After comparisons,we provide a new constraint(M0=5.8±0.09 × 1022 N·m,δ=10.1±0.08°,λ=88°,and depth=20 km)for the focal mechanism of the 2011 event.In addition,we further determine the center frequency(1.631567 ±2.6e-6 mHz)and quality factor(2046.4±50.1)of the 1S0 mode.
Mokhamad Nur CahyadiArizal BawasirSyachrul AriefAmien Widodo...
33-41页
查看更多>>摘要:Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it ispossible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO2 content,which spreaded for tens of kilometers.SO2 content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period.
查看更多>>摘要:At present,one of the methods used to determine the height of points on the Earth's surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1° × 1°,2° × 2°,and 3° × 3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1° × 1° area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.
查看更多>>摘要:Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
查看更多>>摘要:The Earth's Free Core Nutation(FCN)causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG)and very long baseline interferometry(VLBI)provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO)series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of 0.24-5 sidereal days(SDs)in the FCN period(T)and 103-104 in the quality factor(Q)due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P1 is more suitable than others,and different CPO series(after 2009)resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN pa-rameters for SG(T=430.4±1.5 SDs and Q=1.52 × 104±2.5 × 103)and for VLBI(T=429.8±0.7 SDs,Q=1.88 × 104±2.1 × 103).
查看更多>>摘要:We used the geological map and published rock density measurements to compile the digital rock density model for the Hong Kong territories.We then estimated the average density for the whole territory.According to our result,the rock density values in Hong Kong vary from 2101 to 2681 kg·m-3.These density values are typically smaller than the average density of 2670 kg·m-3,often adopted to represent the average density of the upper continental crust in physical geodesy and gravimetric geophysics applications.This finding reflects that the geological configuration in Hong Kong is mainly formed by light volcanic formations and lava flows with overlying sedimentary deposits at many loca-tions,while the percentage of heavier metamorphic rocks is very low(less than 1%).This product will improve the accuracy of a detailed geoid model and orthometric heights.
查看更多>>摘要:Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten watersheds along with characteristics of relief and drainage orientation.Watersheds 7-9 to the north(N)are tectonically active,which can be linked with the North Kathiawar Fault System(NKFS)and followed by watersheds 6,10,1,4 and 5.Stream-length gradient index and sin-uosity index indicate the effect of tectonic events along the master streams in watersheds 6-9.Higher R2 values of the linear curve fit for watershed 7 indicate its master stream is much more tectonically active than the others.The R2 curve fitting model and earthquake magnitude/depth analysis confirm the region to be active.The reactivation of the NKFS most likely led to the vertical movement of western Saurashtra.
查看更多>>摘要:Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least.squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY short-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/1 2.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.