首页期刊导航|地质学报(英文版)
期刊信息/Journal information
地质学报(英文版)
中国地质学会
地质学报(英文版)

中国地质学会

程裕淇

双月刊

1000-9515

geoacta@public3.bta.net.cn

010-68999024

100037

北京复外百万庄26号

地质学报(英文版)/Journal Acta Geologica SinicaCSCDCSTPCDSCI
查看更多>>本刊以反映中国地质界在地质科学理论研究、基础研究和基本地质问题研究的最新、最重要成果为主要任务,兼及新技术与方法。全面系统地向国外读者介绍中国地学研究的新进展。
正式出版
收录年代

    Fossil Equidae in the Linxia Basin with Biostratigraphic and Paleozoogeographic Significance

    SUN Boyang
    1-9页
    查看更多>>摘要:The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 species that represent 10 genera.In comparison to other classic late Cenozoic areas in China,the Linxia Basin stands out,because the fauna and chronological data accompanying Linxia equids render them remarkably useful for biostratigraphy.The anchitheriines in the region,such as Anchitherium and Sinohippus,represent early equids that appeared in the late stages of the middle and late Miocene,respectively.Among the equines,most species of Chinese hipparions have been identified in the Linxia Basin and some species of the genera Hipparion and Hippotherium have FAD records for China.Furthermore,Equus eisenmannae is one of the earliest known species of Equus in the Old World and is well-represented at the Longdan locality.Some species with precise geohistorical distributions can serve as standards for high-resolution chronological units within this framework.Located at the eastern margin of the Tibetan Plateau and subject to considerable uplift,the Linxia Basin has served as a biogeographic transition area for equids throughout the late Cenozoic.

    Provenance of Conglomerate and Sandstone from Early Permian Shoushangou Formation in Xi Ujimqin,Inner Mongolia:Implications for Understanding Paleo-Asian Ocean Subduction

    ZHANG YingliGUO XianqingMA Shouxian
    10-31页
    查看更多>>摘要:During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical Ⅰ-type granite,characterized by low Zr + Nb + Ce + Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330-280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trench-arc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.

    Structural,40Ar/39Ar Geochronological and Rheological Feature Analysis of the Guoxuepu Shear Zone:Indications for the Jitang Metamorphic Complex in the Northern Lancangjiang Zone

    FENG YipengWANG GenhouWANG ShulaiLI Dian...
    32-49页
    查看更多>>摘要:The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2-4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10-14 s-1 to 6.52×10-16 s-1.The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo-Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.

    Petrogenesis and Tectonic Implications of the Early Triassic Nianzi Adakitic Granite Unit in the Yanshan Fold and Thrust Belt:New Constraints from U-Pb Geochronology and Sr-Nd-Hf Isotopes

    ZHANG HuijunWU ChuHE FubingWANG Biren...
    50-66页
    查看更多>>摘要:The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i = 0.705681-0.7057433,εNd(t)=-21.98 to-20.97,zircon εHf(t)=-20.26 to-9.92),as well as the I-type granite features of high SiO2,Na2O and K2O/Na2O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.

    Early Neoproterozoic Granite-Gneisses of the Junggar Alataw(Southeastern Kazakhstan):Age,Petrogenesis and Tectonic Implications

    Nadezhda KANYGINAAndrey TRETYAKOVDmitriy ALEXEIEVKirill DEGTYAREV...
    67-82页
    查看更多>>摘要:The combined petrographic,petrological,geochemical and geochronological study of the Neoproterozoic gneisses of the Sarychabyn and Baskan complexes of the Junggar Alataw of South Kazakhstan elucidate the Precambrian tectonic evolution of the Aktau-Yili terrane.It is one of the largest Precambrian crustal blocks in the western Central Asian orogenic belt.The U-Pb single-grain zircon ages indicate that granite-gneisses formed from the same source and crystallised in the early Neoproterozoic ca.930-920 Ma.The chemical composition of gneisses corresponds to A2-type granites.The whole-rock Nd isotopic characteristics(εNd(t)=-4.9 to-1.0 and TNd(DM-2st)= 1.9 to 1.7 Ga)indicate the involvement of Paleoproterozoic crustal rocks in magma generation.Early Neoproterozoic ca.930-920 Ma A-type granitoids in the Aktau-Yili terrane of South and Central Kazakhstan might reflect within-plate magmatism adjacent to the collisional belt or a local extension setting in back-arc areas of the continental arc.

    Geochronology and Geochemistry of Ore-related Granitoids in the Giant Gariatong Rb Deposit,Tibet and Implications for Rb Metallogeny in China

    LIN BinTANG JuxingTANG PanSUN Yan...
    83-103页
    查看更多>>摘要:Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet.Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization.LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1±0.2 Ma and 19.0±0.2 Ma for greisenized monzogranite and fresh monzogranite,respectively.The monzogranites are characterized as strongly peraluminous,with high contents of SiO2,Al2O3,K2O and Na2O as well as a high differentiation index.They are enriched in light rare earth and large ion lithophile elements with significant negative Eu anomalies and depleted high field-strength elements.Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites,derived from remelting of crustal materials in a post-collisional setting.The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma's evolution.The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.

    Geology and Geochemistry of K-feldspar Veins in Lamprophyre at the Zhenyuan Gold Deposit,Yunnan,Southwest China:Implications for Gold Mineralization

    ZHANG HuichaoCHAI PengZHANG HongruiZHOU Limin...
    104-116页
    查看更多>>摘要:Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization,whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids.K-feldspar veins,with ages between those of lamprophyres and gold deposits,appear in lamprophyres in Zhenyuan.Therefore,K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits.Phlogopite in K-feldspar veins has lower Mg#,Ni,and Cr contents and higher TiO2,Li,Ba,Sr,Sc,Zr,Nb,and Cs contents than phlogopite in lamprophyres.The in-situ Sr isotopic values of apatites(0.7063-0.7066)in K-feldspar veins are within the range for apatites(0.7064-0.7078)from lamprophyres.High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres,in addition to high(87Sr/86Sr)i values of apatite(0.7064-0.7078),indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle.K-feldspar veins are genetically correlated with lamprophyres,whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.

    Genesis of the Nuri Cu-W-Mo Deposit,Tibet,China:Constraints from in situ Trace Elements and Sr Isotopic Analysis of Scheelite

    WANG YiyunWU ZhishanCHEN WenqingDU Qing'an...
    117-131页
    查看更多>>摘要:The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the ore-forming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEM-CL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a'core-rim'structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.

    Source Enrichment Control on the Scale of Magmatic-Hydrothermal W-Sn Mineralization:Insights from Triassic and Jurassic Magma Reservoirs in the Continental Crust,Xitian,South China

    GUO ChunliSimon A.WILDECoralie SIEGELCHEN Zhenyu...
    132-149页
    查看更多>>摘要:There are two factors,source composition and magmatic differentiation,potentially controlling W-Sn mineralization.Which one is more important is widely debated and may need to be determined for each individual deposit.The Xitian granite batholith located in South China is a natural laboratory for investigating the above problem.It consists essentially of two separate components,formed in the Triassic at ca.226 Ma and Jurassic at ca.152 Ma,respectively.The Triassic and Jurassic rocks are both composed of porphyritic and fine-grained phases.The latter resulted from highly-differentiated porphyritic ones but they have similar textural characteristics and mineral assemblages,indicating that they reached a similar degree of crystal fractionation.Although both fine-grained phases are highly differentiated with elevated rare metal contents,economic W-Sn mineralization is rare in the Triassic granitoids and this can be attributed to less fertile source materials than their Jurassic counterparts,with a slightly more enriched isotopic signature and whole-rock εNd(226 Ma)of-10.4 to-9.2(2ζ = 0.2)compared with εNd(152 Ma)of-9.2 to-8.2(2ζ = 0.2)for the Jurassic rocks.The initial W-Sn enrichment was derived from the metasedimentary rocks and strongly enhanced by reworking of the continental crust,culminating in the Jurassic.

    Organic Matter Accumulation in the Upper Permian Dalong Formation from the Lower Yangtze Region,South China

    FANG ChaogangZHANG ChengchengMENG GuixiXU Jinlong...
    150-167页
    查看更多>>摘要:The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.