查看更多>>摘要:目的 基于脑小血管病(cerebral small vessel disease,CSVD)影像学标志物构建预测急性缺血性卒中(acute ischemic stroke,AIS)静脉溶栓后短期转归不良的列线图模型.方法 回顾性纳入2021年1月至2023年12月在济宁市第一人民医院接受静脉溶栓治疗的AIS患者.应用MRI评估CSVD 影像学标志物,包括腔隙性梗死(lacunar infarction,LI)、脑微出血(cerebral microbleeds,CMBs)、脑白质高信号(white matter hyperintensities,WMHs)和血管周围间隙扩大(enlarged perivascular spaces,EPVS).在发病后90 d应用改良Rankin量表进行转归评价,>2分定义为转归不良.通过LASSO回归分析筛选与静脉溶栓后转归不良最相关的变量,并通过logistic回归模型建立预测转归不良的列线图.通过受试者工作特征曲线、校准图和决策曲线分析来验证列线图的预测能力.结果 共纳入167例患者,96例(57%)转归良好,71例(43%)转归不良.将单变量分析中P<0.05的变量纳入LASSO回归模型以筛选变量,最终左侧梗死、心房颤动、基线收缩压、基线美国国立卫生研究院卒中量表(National Institutes of Health Stroke Scale,NIHSS)评分、高密度脂蛋白胆固醇、WMHs(1 分)、CMBs(1分)、EPVS(1分)、LI(1分)、CSVD总体负荷(2~4分)进入多变量logistic回归分析.结果显示,心房颤动[优势比(odds ratio,OR)6.75,95%置信区间(confidence interval,CI)1.49~41.40;P=0.022]、基线收缩压(OR 1.01,95%CI 1.00~1.04;P=0.049)、基线NIHSS评分(OR 1.47,95%CI 1.23~1.80;P<0.001)、WMHs(OR 3.40,95%CI 1.28~9.53;P=0.015)、CMBs(OR 3.24,95%CI 1.12~9.90;P=0.032)和 EPVS(OR 2.89,95%CI 1.05~8.23;P=0.041)是转归不良的独立危险因素,应用上述变量构建列线图模型.受试者工作特征曲线分析显示,曲线下面积为0.885(95%CI 0.837~0.933;P<0.01),提示该模型具有较好的区分度.校准图和决策曲线分析提示该列线图模型的预测值及实际值一致性良好.结论 由心房颤动、基线收缩压、基线NIHSS评分、WMHs、CMBs和EPVS构建的转归不良概率预测列线图模型具有良好的区分度和校准度,具有一定的临床实用性.