查看更多>>摘要:保护性耕作是农业耕地可持续性发展的重要方法,已被世界多地采用,秸秆覆盖量实现从"有无"到"多少"的进一步判定,是秸秆还田检测的重要指标.通过无人机搭载多光谱相机航拍研究区内春秋两季遥感数据,并同步测定玉米秸秆覆盖量.首先,通过遥感数据提取光谱反射率并构建光谱指数,采用相关系数法筛选出对秸秆覆盖量敏感的波段变量和光谱变量,作为模型输入变量;然后,采用支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)、BP神经网络(Back Propagation Neural Network,BPNN)和极限学习机(Extreme Learning Machine,ELM)4种机器学习算法,建立玉米秸秆覆盖量的反演模型,比较不同时期和不同研究区域的模型精度;最后,为解决预测性能受其模型参数影响较大问题,引入遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO),并提出遗传-粒子群混合算法(Ge-netic-Particle Swarm Optimization,GA-PSO),利用它们的互补性提高模型的性能,完成区域内秸秆覆盖量的估算.实验结果表明,基于GA-PSO优化的RF算法玉米秸秆覆盖量反演模型取得了最佳的反演效果,其中R2达到了0.74.同时,对比分析不同数据的反演结果,均较为真实地反映了区域内秸秆覆盖量,估测准确率达到91.36%,说明可以通过优化模型实现结果估算.研究为保护性耕作秸秆还田量检测提供科学参考,亦为其他作物秸秆覆盖量估测提供了可靠的模型反演方法.