首页期刊导航|光学精密工程
期刊信息/Journal information
光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会
光学精密工程

中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

曹健林

月刊

1004-924X

gxjmgc@ciomp.ac.cn;gxjmgc@sina.com

0431-86176855

130033

长春市东南湖大路3888号

光学精密工程/Journal Optics and Precision EngineeringCSCD北大核心CSTPCDEI
查看更多>>《光学 精密工程》学报简介 《光学 精密工程》(Optics and Precision Engineering)是中国科学院主管,中国科学院长春光学精密机械与物理研究所、中国仪器仪表学会、中国微米纳米技术学会共同主办的国际性学术期刊。本刊于1959年创刊《光学机械》,1966年停刊,1975年复刊,1993年更名为《光学 精密工程》。现为16开本,双月刊,科学出版社出版,国内外公开发行。 《光学 精密工程》首任主编为我国第一代著名光学家王大珩,随后担任主编的有张作梅、唐九华和陈星旦,现任主编是中国科学院副院长、中国科学院光电研究院院长曹健林。50余年的变迁,《光学 精密工程》从初创到成长、壮大,特别是改革开放以来的发展,从一个侧面展现了我国现代应用光学与微纳米技术和精密工程交叉学科崛起与发展的梗概和脉络。现在,《光学 精密工程》已成为目前中国历史最悠久、在国内外发行量较大、影响面相对广泛的现代应用光学与微纳米技术和精密工程交叉学科的学术期刊,赢得了国内外同行的普遍认同和信誉,受到包括诺贝尔奖获得者Charles H.Townes教授在内的一些著名国际学者的高度评价,被认为是“有中国特色的刊物”,奠定了它在中国科技期刊中的重要地位。 《光学 精密工程》自创刊以来,为本学科科研工作的正确开展,为加速科研成果的诞生,为发挥预见与导向作用,为我国现代应用光学与微纳米技术和精密工程赶超国际先进行列发挥了不可替代的桥梁与纽带作用。这几年来,《光学 精密工程》继续以提高学术质量来增强核心竞争力,在办刊理念、学术品位、编辑质量、出版发行与宣传,以及运用现代信息技术等方面,进一步加快与国际接轨的步伐。 《光学 精密工程》的编辑委员会由世界各地有权威的学者组成,编辑部设在中国科学院长春光学精密机械与物理研究所。《光学 精密工程》刊载现代应用光学与微纳米技术和精密工程领域的高水平理论性和应用性的科研成果,内容包括:1)空间光学;2)光学材料和纳米材料;3)光学设计和系统;4)激光和激光技术应用;5)光通讯;6)微纳技术与精密机械;7)医用光学;8)先进加工制造技术;9)信息理论与信息处理技术10)测试技术与设备以及有关交叉学科等。    《光学 精密工程》的读者对象为相关专业从事科研、教学、生产、运行的研究人员和工程技术人员以及研究生等。面向国际学科发展的前沿领域,以国家知识创新体系的建设为依托,跟踪热点课题加强组织和征集优秀稿件,优先发表具有创新性、导向性和权威性的学术论文。所有录用稿件均以印刷版、光盘版、网络版等同时出版。《光学 精密工程》被国外著名检索系统,如美国工程索引(EI)、英国科学文摘(INSPEC)、美国化学文摘(CA)、美国剑桥科学文摘(CSA)、俄罗斯文摘杂志(AJ)等多种检索刊物和数据库收录。 《光学 精密工程》编辑委员会期望与科学家、作者、读者、出版社和信息系统团结起来,在共同的目标下相互支持与合作,在我国政府及其主管部门的组织和协调下,共同营造我国科技期刊发展的优良环境,为创办国际一流的学术期刊不懈努力,让中国科技期刊加快融入国际学术交流。
正式出版
收录年代

    融合多尺度特征与注意力的太阳能电池表面缺陷检测

    周颖许士博陈海永刘坤...
    2286-2298页
    查看更多>>摘要:为提高对太阳能电池电致发光(EL)成像各类表面缺陷的检测精度并降低漏检率,提出融合多尺度特征与注意力机制的太阳能电池表面缺陷检测算法CMFAnet.首先,针对太阳能电池表面缺陷尺度跨度大的特点,设计了增强型多尺度特征融合方法,其基本单元由特征对齐模块和特征融合模块串联组成,对于不同语义级别的特征信息,特征对齐模块通过调整它们的尺度,使这些特征更容易融合在一起;其次,针对太阳能电池表面缺陷特征与背景特征相似程度高、几何形状多变的特点,设计了可形变幽灵卷积模块,其基本单元由可形变卷积、多路坐标注意力机制和幽灵卷积(Ghost conv)组成,多路坐标注意力机制优化了可形变卷积中offset的生成,幽灵卷积机制的引入则有效降低了网络模型的计算复杂度.实验结果表明,在光伏电池缺陷异常检测数据集PVEL-AD上,本文方法的平均检测精度(mAP)达91.4%,相较其他主流目标检测网络均有不同程度的提升.

    多尺度特征可形变卷积坐标注意力缺陷检测

    面向干涉包裹相位的多等级噪声抑制网络

    刘芸吴晓强康琦薛锦锋...
    2299-2310页
    查看更多>>摘要:包裹相位是激光干涉测量获取相位信息的前提,为了减小测量过程中噪声对包裹相位条纹的干扰,提高重构图像的质量,提出了一种非对称融合非局部边缘提取神经网络(Asymmetric Fusion Non-Local and Verge Extraction Neural Network,AFNVENet).该网络在FFDNet基础上,设计了非对称融合非局部块和边缘提取模块,通过融合不同级别噪声特征及反向引导去噪过程,在有效抑制多等级噪声的同时,保留了更多的图像细节信息.选择带有乘性散斑与加性随机噪声的包裹相位数据集用于训练,通过消融实验和对比实验结果表明,AFNVENet算法对不同等级的噪声都具有更好的噪声滤除效果,当噪声标准差在[0,2.0]范围内变化时,去噪后的PSNR、SSIM和SSI均值分别达到24.88 dB,0.97和0.95.此外,通过进一步解包裹结果表明,AFNVENet去噪后的解包裹相位均方根误差均值比SCAF,NLM,KSVD和DnCNN分别减小了87%,73%,79%和36%,验证了该方法的可行性.AFNVENet方法在抑制噪声时具有较好的鲁棒性,可适用于不同干涉测量环境下多等级噪声的包裹相位信息恢复.

    激光干涉测量包裹相位噪声抑制AFNVENet网络

    联合图像层级特征的压缩感知迭代重构

    刘玉红杨恒
    2311-2324页
    查看更多>>摘要:基于卷积神经网络(Convolutional Neural Networks,CNN)的图像压缩感知重构算法难以捕捉高分辨率图像的长距离依赖关系,采用Transformer虽能解决该问题,但网络参数量和图像重构时间成倍增长.基于此,本文提出了一种联合图像层级特征的压缩感知迭代重构网络(Combining Image Hierarchical-Feature Network,CHFNet),在提高图像重构质量的同时减少重构时间.CHFNet由采样和重构两个子网络组成,采样子网络通过可学习的采样矩阵为重构过程提供更有效的测量值.在重构子网络中,设计了一种使用梯度下降操作和特征优化操作的迭代策略,同时提出一种轻量级CNN-Transformer混合架构,能够建模并优化高细粒度的图像层级特征,在增强网络感知能力的同时降低计算复杂度.此外,CHFNet通过联合优化学习采样重构,实现了完整的端到端训练.实验结果表明,所提算法在多个公共基准数据集上取得了良好的重构效果.在Urban100 数据集上,相较于现有最优算法CSformer,平均PSNR,SSIM分别提升0.63 dB和0.007 6;在0.10采样率下,相较CSformer在Set11,BSD68和Urban100数据集上的平均重构时间分别减少了2.744 7 s,3.551 0 s和4.775 0 s.

    压缩感知图像层级特征Transformer卷积神经网络迭代策略图像重构