查看更多>>摘要:熔池的图像处理与特征提取技术是船舶熔化极气体保护焊(gas metal arc welding,GMAW)智能化焊接质量监控的重要内容,针对船体板GMAW焊接过程中的烟雾大、飞溅多等不稳定特性导致熔池图像采集模糊、边缘提取困难等问题,提出一种基于均值漂移(mean shift,MS)优化模糊C均值聚类(fuzzy c-means,FCM)的图像处理算法.在优化设计焊接动态视觉传感系统中,以最大化保证图像信息采集清晰度的基础上,利用MS算法获取超像素图像以解决FCM算法对噪声的敏感性,同时在FCM算法上引入加权邻域窗口,以增强MS-FCM算法的鲁棒性,来克服烟雾、飞溅、弧光等噪声影响,进而完成图像分割与边缘提取.最后,设计出关于FCM、空间约束模糊C均值聚类(fuzzy c-means with spatial constraints,FCM_S)、加强型模糊聚类(enhanced fuzzy c-means,ENFCM)和模糊局部信息C均值聚类(fuzzy local information c-means clustering,FLICM)算法的 4种不同图像处理方法,并与MS-FCM优化模型进行边缘分割效果对比,获取几种方法所提取的熔宽,验证熔池几何特征的提取精度.结果表明,MS-FCM算法在船舶焊接熔池图像处理方面能有效抑制噪声干扰,平滑信息,达到较高的提取精度.