查看更多>>摘要:During the whole service lifetime of aircraft structures with composite materials,impacts are inevitable and can usually cause severe but barely visible damages.Since the occurrences of impact are random and unpredictable,it is a hotspot direction to develop an online impact moni-toring system that can meet strict limitations of aerospace applications including small size,light weight,and low power consumption.Piezoelectric(PZT)sensor,being able to generate impact response signals with no external power and cover a large-scale structure with only a small amount of them,is a promising choice.Meanwhile,for real systems,networks with multiple nodes are nor-mally required to monitor large-scale structures in a global way to identify any impact localization confliction,yet the existing studies are mostly evaluated with single nodes instead of networks.Therefore,in this paper,based on a new low-power node designed,a Bluetooth-based digital impact monitoring PZT sensor network is proposed for the first time with its global confliction-solving impact localization method.Evaluations of the system as a network are researched and analyzed on a complex real aircraft wing box for a global confliction-solving impact localization,showing a satisfying high accuracy.
查看更多>>摘要:Composite Thin-walled Lenticular Tube(CTLT)is increasingly utilized in small satellites missions as a lightweight,foldable,and rollable structural material that facilitates the construction of large deployable systems.The CTLT is initially flattened and coiled around a central hub for storage before launch,during which elastic energy is stored as deformation energy,allowing it to be self-deployed on demand for use in orbit.This work presents a comprehensive investigation into the coiling,storage and deployment behaviors of CTLT that wraps around a central hub.A non-linear explicit dynamic finite element model was developed with both deformable CTLT and rigid-bodies mechanisms including the central hub and guide rollers,as well as the complex interactions among them.The coiling mechanics characteristics such as stored strain energy and rotational moment were presented and validated against experimental data in the literature.Then,the dynamic deployment behaviors were analyzed in terms of two different deployment methods,namely,controlled deployment and free deployment.The effect of material property change during storage was also discussed through numerical experiments.
查看更多>>摘要:During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells,the germanium(Ge)layer occupies the majority of the thick-ness as the substrate.Due to the intrinsic brittleness of semiconductor material,there exist various defects during the preparation and assembly of solar cells,the influences of which tend to be inten-sified by the irradiation effect.In this work,first,Ge specimens for mechanical tests were prepared at scales from microscopic to macroscopic.Then,after different doses of electron irradiation,the mechanical properties of the Ge specimens were investigated.The experimental results demonstrate that electron irradiation has an obvious effect on the mechanical property variation of Ge in diverse scales.The four-point bending test indicates that the elastic modulus,fracture strength,and max-imum displacement of the Ge specimens all increase,and reach the maximum value at the irradia-tion dose of 1 x 1015 e/cm2.The micrometer scale cantilever and nanoindentation tests present similar trends for Ge specimens after irradiation.Atomic Force Microscope(AFM)also observed the change in surface roughness.Finally,a fitting model was established to characterize the relation between modulus change and electron irradiation dose.
查看更多>>摘要:The prolonged thermal exposure with centrifugal load results in microstructural degra-dation,which ultimately leads to a reduction in the fatigue and creep resistance of the turbine blades.The present work proposes a multi-scale framework to estimate the life reduction of turbine blades,which combines a microstructural degradation model,a two-phase constitutive model,and a microstructure-dependent fatigue and creep life reduction model.The framework with multi-scale models is validated by a Single Crystal(SC)Ni-based superalloy at the microstructural length-scale and is then applied to calculate the microstructural degradation and the fatigue and creep life reduc-tion of turbine blades under two specific service conditions.The simulation results and quantitative analysis show that the microstructural degradation and fatigue and creep life reduction of the tur-bine blade are heavily influenced by the variations in the proportion of the intermediate state,namely,the maximum rotor speed status,in the two specific service conditions.The intermediate state accelerates the microstructural degradation and leads to a reduction of the life,especially the effective fatigue life reserve due to the higher temperature and rotational speed than that of the 93%maximum rotor speed status marked as the reference state.The proposed multi-scale framework provides a capable approach to analyze the reduction of the fatigue and creep life for turbine blade induced by microstructural degradation,which can assist to determine a reasonable Time Between Overhaul(TBO)of the engine.
查看更多>>摘要:In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on composite holes is promoted,in view of non-uniform extrusion caused by forced installation.At first,non-uniform extrusion of the hole edge caused by forced installation is analyzed.According to the contact state,expression of hole deformation is given.Then,based on Hertz theory,the maximum extrusion load is obtained with help of deformation expression.By constructing an elastic foundation beam model,3D stress distributed on a hole could be ana-lyzed according to the extrusion load.Then,stress distribution predicted by the above analytical method is compared with that provided by FE considering composite damage.Finally,a forced installation experiment is carried out to analyze the damage distribution of the joint.Results show that a central-symmetrically distributed stress is introduced by the hole-location error.With an increment of the error,strength of composite decreases due to extrusion damage.Therefore,stress presents a concave distribution on the hole.As the hole-location error exceeding 3%,stress decreases gradually due to failure of composite.Damage of holes does not exhibit a centrosymmet-ric distribution.Serious damage is mainly distributed on the entrance of the hole at the lower sheet.
查看更多>>摘要:The large manipulator outside the space cabin is a multi-degree of freedom actuator for space operations.In order to realize the automatic control and flexible operation of the space manipulator,a novel spoke structure piezoelectric six-dimensional force/torque sensor with redun-dancy ability,high stiffness and good decoupling performance is innovatively proposed.Based on the deformation coordination relationship,the redundancy measurement mechanism is revealed.The mathematical models of the sensor with and without branch fault are established respectively.The finite element model is established to verify the feasibility of structure and redundancy measur-ing principle of the sensor.Depending on the theoretical analysis and simulation analysis,the pro-totype of the sensor is developed.Static and dynamic calibration experiments are carried out.The actual output voltage signal of the six-dimensional force/torque sensor is collected to establish the equation between the standard input applied load and the actual output voltage signal.Based on ant colony optimized BP algorithm,performance indexes of the sensor with and without branch fault are analyzed respectively.The experimental results show that the spoke piezoelectric six-dimensional force/torque sensor with the eight-point support structure has good accuracy and reli-ability.Meanwhile,it has strong decoupling characteristic that can effectively shield the coupling between dimensions.The nonlinear errors and maximum interference errors of decoupled data with and without branch faults are less than 1%and 2%,respectively.The natural frequency of the six-dimensional force sensor can reach 2856.45 Hz and has good dynamic characteristics.The research content lays a theoretical and experimental foundation for the design,development and application of the new six-dimensional force/torque sensors with redundancy.Meanwhile,it will significantly improve the research level in this field,and provide a strong guarantee for the smooth implemen-tation of force feedback control of the space station manipulator project.
查看更多>>摘要:Track-Before-Detect(TBD)is an efficient method to detect dim targets for radars.Con-ventional TBD usually follows an approximate motion model of the target,which may cause an inaccurate integration of the target energy.A TBD technique on basis of pseudo-spectrum in mixed coordinates adopting an accurate motion model for bistatic radar system is developed in this paper.The predicted position in bistatic polar plane is derived according to a nonlinear function that exactly describes the constant Cartesian velocity motion.Then around the predicted position,a pseudo-spectrum is formulated and its samples are accumulated to the integration frame for energy integration.The evolution of the state and the procedure of accumulation of the target energy are derived elaborately.The superior performance of the proposed method is demonstrated by some simulations.
查看更多>>摘要:The rapid development of the anti-missile weapon technology brings new challenges to the cooperative penetration strategy solution and the guidance law design for Hypersonic Vehicles(HVs).This paper studies the coordinated game penetration guidance problem for multiple hyper-sonic vehicles faced with space threat areas.A scheme for seeking cooperative game penetration guidance strategy under safety critical control framework is presented.In this scheme,a multi-HV cooperative game model is proposed in a minimum optimization form which can simplify the solving process and accelerate the computing speed.Then,a second-order control barrier func-tion is developed to transform the implicit nonlinear constraints of the proposed model into linear ones.In order to obtain better performance of guidance strategy,a composite guidance law under the safety critical control framework is presented to allocate guidance strategies appropriately in the whole process.It is shown that the proposed scheme can guarantee successful penetration while avoiding threat areas.Finally,a comparative simulation with a two-on-three game is conducted to verify the effectiveness of the proposed method.
查看更多>>摘要:Disturbance-Free Payload(DFP)spacecraft can meet the requirements of ultra-high atti-tude pointing accuracy and stability for future space missions.However,as the main control actu-ators of DFP spacecraft,Linear Non-Contact Lorentz Actuators(LNCLAs)have control output problems with six-degree-of-freedom coupling and nonlinear effects,which will affect the attitude control performance of DFP spacecraft.To solve this problem,a novel concept for Non-Contact Annular Electromagnetic Stabilized Satellite Platform(NCAESSP)is proposed in this study.The concept is centered on replacing the LNCLAs with a non-contact annular electromagnetic actuator to solve the two problems mentioned above.Furthermore,for the different control requirements of the payload module and the support module of the NCAESSP,a high-precision attitude controller based on the robust model matching method and a dual quaternion-based adaptive sliding mode controller are proposed.Additionally,the simulation results verify the feasibility and effectiveness of the proposed approach.
查看更多>>摘要:Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radio-metric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the pro-posed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure fea-tures and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching.