首页期刊导航|计算机工程
期刊信息/Journal information
计算机工程
华东计算技术研究所 上海市计算机学会
计算机工程

华东计算技术研究所 上海市计算机学会

游小明

月刊

1000-3428

hdsce@sohu265359.sohuvip.net

021-54972331

200233

上海市桂林路418号

计算机工程/Journal Computer EngineeringCSCD北大核心CSTPCD
查看更多>>本刊是中国电子科技集团公司第三十二研究所(华东计算技术研究所)主办的学术性刊物,是上海市计算机学会会刊。主要特点:以最快的速度、科学求实的精神,精选刊登代表计算机行业前沿科研、技术、工程方面的高、精、尖优秀论文。贯彻党的“双百”方针,繁荣科技创作,促进国内外学术交流,探讨和传播计算机科学的理论和实践,加速和促进我国计算机事业的发展。
正式出版
收录年代

    基于多Agent传动关系的股市趋势预测

    鲍志姚宏亮方帅杨静...
    267-276页
    查看更多>>摘要:股市趋势预测是机器学习领域中一个具有挑战性的任务。由于一些因素对于股市的影响是动态且不确定的,导致股市趋势难以预测。针对已有方法在股市预测时存在的灵敏性差、适应力弱等问题,从快变量和慢变量的传动关系出发,利用Agent技术对股市中的快周期和慢周期进行联合建模,提出一种多Agent传动影响图(MATID)股市趋势预测方法。给出股市中快周期和慢周期的划分标准,并引入周期能量的概念;通过对相关趋势指标的特征融合,给出周期能量的量化计算方法;通过分析快周期和慢周期的动态作用过程,给出传动因子的表示方法;将快周期和慢周期分别对应成不同的Agent,利用多Agent影响图模型建模快周期和慢周期的传动过程;利用股市振子模型表示快Agent和慢Agent之间的传动效用,利用联合树的自动推理技术对股市趋势进行预测。在不同样本数量和不同股市趋势下进行实验,结果表明,与门控循环单元、S-LSTM和Hybrid-RNN预测方法相比,MATID方法预测精确率提升1。5%~7。0%,召回率提升5。4%~6。7%,F1值提升3。7%~6。2%,具有良好的灵敏性和适应力。

    多Agent传动影响图周期传动振子模型效用函数联合树

    基于SwinT-YOLOX模型的自动扶梯行人安全检测算法

    侯颖杨林胡鑫贺顺...
    277-289页
    查看更多>>摘要:自动扶梯被广泛应用在公共场合,乘客摔倒事故如果不能被及时发现并处理,会造成严重的人身伤害,因此实现自动扶梯智能化监控管理势在必行。受自动扶梯运行环境复杂、行人多以及局部遮挡情况的影响,传统的人体姿态特征摔倒检测模型效果不佳且检测速度减慢。融合Swin Transformer和YOLOX目标检测算法的优秀策略,提出一种基于SwinT-YOLOX网络模型的自动扶梯行人摔倒检测算法。采用Swin Transformer模型作为骨干网络,颈部网络使用添加注意力机制的YOLOX模型,进一步提升特征图的多样性和表达能力。此外,利用漏斗修正线性单元视觉激活函数构建CBF模块,改进颈部网络和Head网络结构,从而获得更优的特征检测性能。实验结果表明,针对自建扶梯行人摔倒数据库和网络采集实际扶梯行人摔倒事故,与AlphaPose、OpenPose、YOLOv5等算法相比,该算法检测性能明显提高,行人摔倒平均检测精度可以达到95。92%,检测帧率为24。08帧/s,能够快速、精准地检测到乘客摔倒事故发生,监控管理平台立刻采取安全急停措施以保证乘客安全。

    自动扶梯摔倒检测深度学习YOLOX模型SwinTransformer模型漏斗修正线性单元视觉激活函数

    基于注意力机制的多尺度融合人群计数算法

    谢新林尹东旭张涛源谢刚...
    290-297页
    查看更多>>摘要:针对人群计数图像人头尺度变化大、背景噪声高等问题,提出一种基于注意力机制的多尺度融合人群计数算法,以充分聚合多尺度信息,并有效区分背景噪声。构建基于残差连接的空洞空间金字塔池化,通过残差结构以及多个不同扩张率的空洞卷积在捕获多尺度头部目标特征的同时融入浅层特征图的空间细节信息,提高特征图质量;构建跨层多尺度特征融合模块,融合浅层和深层分支不同大小的边缘细节信息和上下文语义信息,并设计基于多分支的特征融合模块,融合不同感受野大小的多尺度信息以缓解大规模人头尺度变化的问题;构建基于矩阵相似运算的通道和空间注意力机制模块提取像素级特征权重,加强网络对于背景和人头目标的判别能力,自适应矫正位置信息。实验结果表明,相比11种对比算法的最优值,所提算法在SHA数据集上的平均绝对误差和均方根误差指标降低1。4%、4。2%,在UCF_CC_50数据集上降低4。9%、1。8%,能够精确地预测人群分布状态和估计人群数量,生成高质量的人群密度图。

    人群计数多尺度融合注意力机制卷积神经网络密度图

    基于时空长短时记忆神经网络的地基云图预测算法

    吴现吐松江·卡日王海龙马小晶...
    298-305页
    查看更多>>摘要:针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信息进行多分支获取,一部分使用ST-LSTM神经网络提取不同帧之间的时空特征,另一部分将图像序列进行分解,并通过基于门控机制的记忆融合网络来获取分解后图像中的结构细节信息;最后将得到的分支特征进行组合后经过解码网络输出最终的预测视频流。在地基云图、Moving MNIST和Human 3。6M数据集上的实验结果表明,在图像预测准确率、结构细节信息保留效果以及人眼主观感受上,该预测模型均优于对比模型。与基准模型TaylorNet相比,所提模型在Moving MNIST数据集上均方误差指标和平均绝对误差指标分别降低15。7%和11。8%,在地基云图数据集上,其结构相似性指标与峰值信噪比指标分别提升1%和3。2%,且生成的视频流数据更为清晰,能够更准确地描述云层未来的运动状况,从而更可靠地预测光伏电站未来的输出功率。

    深度学习视频预测地基云图麦克劳林展开时空长短时记忆神经网络

    基于改进VMD-XGBoost-BiLSTM组合模型的光伏发电异常检测

    赵博超马嘉骏崔磊栾文鹏...
    306-316页
    查看更多>>摘要:光伏发电是我国大力发展的重要新能源发电形式,其异常检测是为系统运维决策提供依据的重要环节。由组件老化、故障或不良因素造成的光伏系统运行状态异常将直接影响发电效率和能力,进而会对系统安全性和经济效益造成影响。然而,现有检测方法存在识别异常类型不全面、对标注数据数量依赖性强、更新模型成本高、对噪声和测量误差敏感等局限性以及不适合大规模推广部署的缺点。为解决这一问题,提出一种基于历史发电量以及气象监测数据的光伏发电异常检测方法。利用基于异常值去除和相关性分析的预处理步骤去除原始数据中的噪声并筛选最佳特征。通过变分模态分解(VMD)将数据分解成多个模态分量以提取光伏发电量的周期和非周期特征。构建改进VMD-XGBoost-BiLSTM组合模型,利用自适应赋权、Attention机制和改进鲸鱼优化算法的特点完成光伏发电量常态预测。在此基础上,通过与实际测量值进行对比,利用设定的规则进行异常判断。实验结果表明,该方法相较于单一BiLSTM和XGBoost模型平均误差下降幅度超过20%,其中约15。67%的性能提升得益于所提改进措施。

    光伏发电异常检测神经网络变分模态分解注意力机制改进鲸鱼优化算法

    基于注意力机制的人体关键点隐式建模网络

    赵佳圆张玉茹苏晓东徐红岩...
    317-325页
    查看更多>>摘要:人体姿态估计任务需要利用视觉线索和关节间的解剖关系来定位关键点,但基于卷积神经网络的方法难以关注远程上下文线索和建模远距离关节之间的依赖关系。为此,提出一种基于注意力机制的隐式建模方法,通过多阶段迭代计算关节之间的特征相关性来隐式建模关键点间的约束关系,消除卷积神经网络的局部操作,扩大网络的感受野,建模远距离关节之间的依赖关系。为了解决网络在训练过程中可能弱化不可见关键点的问题,采用焦点损失函数,使网络更关注于复杂的关键点。使用目前精度最高的特征提取高分辨率网络(HRNet)和经典特征提取残差网络(ResNet)作为主干网络进行实验,结果表明,在同等实验条件下,隐式建模方法可以提高人体姿态估计网络的性能,在MPII和MSCOCO人体姿态估计基准数据集上,以HRNet网络为主干网络的算法相较于原网络,精度分别提升了1。7%和2。6%。

    人体姿态估计卷积神经网络注意力机制焦点损失隐式建模

    SQL-to-text模型的组合泛化能力评估方法

    陈琳范元凯何震瀛刘晓清...
    326-335页
    查看更多>>摘要:数据库的结构化查询语言(SQL)到自然语言的翻译(SQL-to-text)能提高关系数据库的易用性。近年来该领域主要使用机器学习的方法进行研究并已取得一定进展,然而现有翻译模型的能力仍不足以投入实际应用。由于组合泛化能力是SQL-to-text模型在实际应用中提升翻译效果的必要能力,且目前缺少对此类模型组合泛化能力的研究,因此提出一种SQL-to-text模型的组合泛化能力评估方法。基于现有的SQL-to-text数据集生成大量SQL和对应的自然语言翻译(SQL-自然语言对),并按SQL-自然语言对所含SQL子句的个数将其划分为训练数据与测试数据,使测试数据中的SQL子句皆以不同的组合方式在训练数据中出现,从而得到可评估模型组合泛化能力的新数据集。评估结果表明,该方法对查询知识的使用程度较高,划分数据的方式更加合理,所得数据集符合评估组合泛化能力的需求且贴近模型的实际应用场景,受到原始数据集的限制程度更低,并证实现有模型的组合泛化能力仍需提升,其中针对SQL-to-text任务设计的关系感知图转换器模型组合泛化能力最弱,表明原有的SQL-to-text数据集对组合泛化能力的考察存在欠缺。

    结构化查询语言组合泛化机器翻译数据库长短期记忆模型

    基于异构图分层学习的细粒度多文档摘要抽取

    翁裕源许柏炎蔡瑞初
    336-344页
    查看更多>>摘要:多文档摘要抽取的目标是在多个文档中提取共有关键信息,其对简洁性的要求高于单文档摘要抽取。现有的多文档摘要抽取方法通常在句子级别进行建模,容易引入较多的冗余信息。为了解决上述问题,提出一种基于异构图分层学习的多文档摘要抽取框架,通过层次化构建单词层级图和子句层级图来有效建模语义关系和结构关系。针对单词层级图和子句层级图这2个异构图的学习问题,设计具有不同层次更新机制的两层学习层来降低学习多种结构关系的难度。在单词层级图学习层,提出交替更新机制更新不同的粒度节点,以单词节点为载体通过图注意网络进行语义信息传递;在子句层级图学习层,提出两阶段分步学习更新机制聚合多种结构关系,第一阶段聚合同构关系,第二阶段基于注意力聚合异构关系。实验结果表明,与抽取式基准模型相比,该框架在Multi-news数据集上取得了显著的性能提升,ROUGE-1、ROUGE-2和ROUGE-L分别提高0。88、0。23和2。27,消融实验结果也验证了两层学习层及其层次更新机制的有效性。

    抽取式多文档摘要细粒度建模异构图分层学习语义关系结构关系

    投稿指南

    《计算机工程》编辑部
    封3页