首页期刊导航|计算机应用研究
期刊信息/Journal information
计算机应用研究
四川省电子计算机应用研究中心
计算机应用研究

四川省电子计算机应用研究中心

刘营

月刊

1001-3695

arocmag@163.com

028-85249567

610041

成都市成科西路3号

计算机应用研究/Journal Application Research of ComputersCSCD北大核心CSTPCD
查看更多>>本刊创刊于1981年,以其新颖性、技术性、实用性、工具性、知识性于一身,设置众多栏目,信息量极大,反映并涵盖了当今国内外计算机应用研究的主流技术、热点技术及最新发展趋势,是一份极具收藏价值的技术刊物。本刊读者对象为从事计算机应用、开发、研究的科技人员,大中专院校师生,各企事业单位技术人员,计算机业余爱好者及相关管理、情报工作者订阅、收藏。本刊现为中国计算机学会会刊,中国科技论文统计源核心期刊,全国中文核心期刊,中国科学引文数据库来源期刊, 中国学术期刊综合评价数据库来源期刊,并为多个检索数据库收录,在国内科技期刊评比中多次荣获优秀科技期刊奖。
正式出版
收录年代

    片段抽取型机器阅读理解算法研究

    叶俊民赵晓丽杜翔姚贤坦...
    3268-3273页
    查看更多>>摘要:针对现有的机器阅读理解模型主要使用循环模型处理文本序列信息,这容易导致训练和预测速度慢且模型预测准确性不高等问题,提出了一种片段抽取型机器阅读理解算法QA-Reader.该算法利用大型预训练语言模型RoBERTa-www-ext获取问题和上下文的词嵌入表示;使用深度可分离卷积和多头自注意力机制进行编码;计算上下文和问题的双向注意力及上下文的自注意力,以融合上下文和问题之间的关联信息,拼接得到最终的语义表征;经过模型编码器预测得到答案,模型针对不可回答的问题计算了其不可回答的概率.在中文片段抽取型机器阅读理解数据集上进行了实验,结果表明QA-Reader模型与基线模型相比,其性能方面EM和F1值分别提高了3.821%、2.740%,训练速度提高了0.089%.

    机器阅读理解片段抽取型机器阅读理解RoBERTa-www-ext卷积神经网络注意力机制

    基于距离与图卷积网络的方面级情感分析

    巫浩盛缪裕青张万桢周明...
    3274-3278,3321页
    查看更多>>摘要:目前,基于卷积神经网络和循环神经网络的方面级情感分析研究工作较少同时考虑到句子的句法结构和词语的语法距离,且卷积神经网络和循环神经网络无法有效地处理图结构的数据.针对上述问题,提出了一种基于距离与图卷积网络的方面级情感分类模型.首先,为该模型设计了一个具有残差连接的双层双向长短期记忆网络,用于提取句子的上下文信息;然后,根据句法依赖树得到词语的语法距离权重,并根据词语之间的句法关系构建邻接矩阵;最后,采用图卷积网络结合句子的上下文信息、语法距离权重和邻接矩阵提取方面的情感特征.实验结果表明,模型是有效的且可获得更好的性能.

    方面级情感分析图卷积网络句法依赖树双向长短期记忆网络距离

    基于深度自编码器子域自适应的跨库语音情感识别

    庄志豪傅洪亮陶华伟杨静...
    3279-3282,3348页
    查看更多>>摘要:针对不同语料库之间数据分布差异问题,提出一种基于深度自编码器子域自适应的跨库语音情感识别算法.首先,该算法采用两个深度自编码器分别获取源域和目标域表征性强的低维情感特征;然后,利用基于LMMD(local maximum mean discrepancy)的子域自适应模块,实现源域和目标域在不同低维情感类别空间中的特征分布对齐;最后,使用带标签的源域数据进行有监督地训练该模型.在eNTERFACE库为源域、Berlin库为目标域的跨库识别方案中,所提算法的跨库识别准确率相比于其他算法提升了5.26%~19.73%;在Berlin库为源域、eNTERFACE库为目标域的跨库识别方案中,所提算法的跨库识别准确率相比于其他算法提升了7.34%~8.18%.因此,所提方法可以有效地提取不同语料库的共有情感特征并提升了跨库语音情感识别的性能.

    跨库语音情感识别深度自编码器子域自适应监督学习

    基于深度半监督的柬语句子级情感分类

    李超严馨徐广义莫源源...
    3283-3288页
    查看更多>>摘要:针对柬语标注数据较少、语料稀缺,柬语句子级情感分析任务进步缓慢的问题,提出了一种基于深度半监督CNN(convolutional neural networks)的柬语句子级情感极性分类方法.该方法通过融合词典嵌入的分开卷积CNN模型,利用少量已有的柬语情感词典资源提升句子级情感分类任务性能.首先构建柬语句子词嵌入和词典嵌入,通过使用不同的卷积核对两部分嵌入分别进行卷积,将已有情感词典信息融入到CNN模型中去,经过最大延时池化得到最大输出特征,把两部分最大输出特征拼接后作为全连接层输入;然后通过结合半监督学习方法——时序组合模型,训练提出的深度神经网络模型,利用标注与未标注语料训练,降低对标注语料的需求,进一步提升模型情感分类的准确性.结果 证明,通过半监督方法时序组合模型训练,在人工标记数据相同的情况下,该方法相较于监督方法在柬语句子级情感分类任务上准确率提升了3.89%.

    柬语句子级情感分类情感词典嵌入卷积神经网络半监督时序组合模型

    一种融合关键词的生成式摘要方法

    李伯涵李红莲
    3289-3292,3358页
    查看更多>>摘要:针对生成式文本摘要中模型对文本语义了解不够充分以及生成摘要缺乏关键信息的问题,提出一种融合关键词的中文摘要生成模型KBPM(Key-BERT-Pen model).首先使用TextRank方法将文本中关键词抽取出来,然后将抽取出的关键词与原文一起经过BERT预训练模型得到更加精确的上下文表示,最终将得到的词向量输入到带有双重注意力机制的指针模型中,指针模型从词汇表或原文中取出词汇来生成最终的摘要.实验结果表明,KBPM模型能够生成可读性更好、ROUGE分数更高的文本摘要.通过对比分析也验证了KBPM模型有效解决了生成摘要中缺乏关键信息的问题.

    文本摘要BERT预训练模型主题关键词双重注意力机制指针模型

    基于分组和IGSA的并行密度聚类算法

    胡春安王家欣毛伊敏
    3293-3299页
    查看更多>>摘要:针对并行密度聚类算法在处理大数据集时存在伸缩困难、参数寻优能力不佳、并行化效率较低等问题,提出一种基于分组和重力搜索优化算法(improve gravitational search algorithm,IGSA)的并行密度聚类算法(densi-ty-based clustering algorithm based on groups and improve gravitational search,MR-GDBIGS).首先,该算法设计了基于图形的分组策略(grouping strategy based on pattern,GSP)来有效划分数据,加速邻域搜索,解决了处理大数据集时伸缩困难的问题;其次,在局部聚类中提出基于位置更新函数(position update function,PUF)的重力搜索优化算法,动态寻找局部聚类中的最优参数,提升了局部聚类的效果;最后,提出基于覆盖树的并行局部簇合并策略(cluster merging strategy by using MapReduce,MR-CTMC),在实现局部簇并行化合并的同时加快了合并局部簇的收敛速度,提升了算法整体的并行化效率.实验结果表明,MR-GDBIGS算法在处理大数据时的聚类效果更佳,且并行化性能更好.

    大数据密度聚类算法基于图形的分组策略重力搜索优化算法MR-CTMC策略

    基于依赖度的区间集决策信息表属性约简

    唐鹏飞张贤勇莫智文
    3300-3303,3309页
    查看更多>>摘要:区间集决策信息表拓展了经典决策信息表,但其属性约简研究较少.针对区间集决策信息表存在的问题,采用模型正域及相关依赖度提出属性约简及其启发式约简算法.在区间集粗糙集模型中,定义关于决策分类的正域与依赖度,证明粒化单调性等性质.提出基于依赖度的属性约简,设计启发式约简算法.实例分析与数据实验表明,设计的基于依赖度的启发式约简算法是有效的,所得结果有利于依赖学习与特征优化.

    粗糙集区间集粗糙集区间集决策信息表依赖度属性约简启发式约简算法

    异质信息网络中基于邻接熵的影响力最大化

    寸轩懿周丽华
    3304-3309页
    查看更多>>摘要:影响力最大化是研究如何在社会网络中寻找小部分最具影响力的节点作为信息扩散源,使信息在网络中传播范围最大的问题.已有相关研究大多只是针对同质信息网络,但现实中的社会网络是包含了多种对象类型和对象之间多种关系类型的异质网络,因此提出了基于元路径的邻接信息熵(MPAIE)模型,以及基于元图的邻接信息熵(MGAIE)模型来模拟异质信息网络中的社会影响.通过设置元路径或元图,该方法可以灵活地整合异质网络中的结构和语义信息,对节点的影响力做出度量,并在两个真实数据集上验证了MPAIE及MGAIE模型的有效性.

    异质信息网络信息扩散影响力最大化信息熵元路径元图

    用于方面提取的软原型增强自适应损失模型

    徐福黄贤英蒋兴渝彭竞瑶...
    3310-3315页
    查看更多>>摘要:方面提取是方面级情感分析的一个核心任务,目前方法是用方面提取、观点提取、方面级情感分类间的关系构建多元关系协作学习模型.常用的数据集中存在大多数方面词和上下文词的出现次数较少,缺乏样本暴露量等问题,使序列标注器收敛到一个极差的区域,且由于在计算模型总损失时忽略了不同部分对方面提取效果的差异,导致神经网络模型几乎无法达到最佳性能.因此提出用于方面提取的软原型增强自适应损失模型(SPEAL),通过软检索建立低样本暴露量文本与高样本暴露量文本之间的动态关性,同时根据方面提取、观点提取、方面级情感分类对方面提取的贡献度自适应更新各部分损失的权重.在REST14、RESTI5、LAP14三个数据集上的实验结果表明,SPEAL在加速收敛的同时提升了方面提取的效果.

    方面提取情感分析软检索自适应损失

    融合多层次结构信息的深度属性二分网络表示学习

    李婷婷吕少卿赵雪莉任新成...
    3316-3321页
    查看更多>>摘要:网络表示学习旨在将网络中的节点转换到低维向量空间,并保持网络固有属性.现有方法大多针对普通网络,忽略了属性二分网络的特殊性及网络的高度非线性特性等.针对上述问题,首先引入一个扩展权重矩阵融合二分网络显式和携带属性信息的隐式结构;接着提出一种基于深度自编码器的属性二分网络表示学习模型,以捕捉网络的高度非线性特性;通过深度自编码器重构二阶邻近度以保持全局网络结构,同时该编码器利用节点一阶邻近度作为监督信息来保持局部网络结构;最后进行联合优化.将该模型在Yelp、Douban Book、Dou-ban Movie和MovieLens四个数据集上进行推荐任务,结果显示该模型的F1@10、MAP@10、MRR@10和NDGG@10指标在四个数据集上的平均值相较最新基准方法(ABNE)分别提高4.29%、5.63%、6.26%、4.21%.

    属性二分网络网络嵌入高度非线性深度学习