首页期刊导航|计算机应用研究
期刊信息/Journal information
计算机应用研究
四川省电子计算机应用研究中心
计算机应用研究

四川省电子计算机应用研究中心

刘营

月刊

1001-3695

arocmag@163.com

028-85249567

610041

成都市成科西路3号

计算机应用研究/Journal Application Research of ComputersCSCD北大核心CSTPCD
查看更多>>本刊创刊于1981年,以其新颖性、技术性、实用性、工具性、知识性于一身,设置众多栏目,信息量极大,反映并涵盖了当今国内外计算机应用研究的主流技术、热点技术及最新发展趋势,是一份极具收藏价值的技术刊物。本刊读者对象为从事计算机应用、开发、研究的科技人员,大中专院校师生,各企事业单位技术人员,计算机业余爱好者及相关管理、情报工作者订阅、收藏。本刊现为中国计算机学会会刊,中国科技论文统计源核心期刊,全国中文核心期刊,中国科学引文数据库来源期刊, 中国学术期刊综合评价数据库来源期刊,并为多个检索数据库收录,在国内科技期刊评比中多次荣获优秀科技期刊奖。
正式出版
收录年代

    基于上下文强化八叉树网络三维模型语义分割算法

    杨茂男贾庆轩李旭龙苗雨...
    3586-3589,3596页
    查看更多>>摘要:针对三维模型语义分割中上下文特征的学习问题,提出了一种基于上下文强化八叉树网络的三维模型语义分割算法,名为CR-O-CNN(context-reinforced octree convolutional neural network).将基于八叉树的卷积神经网络引入上下文强化网络中,对上下文特征的学习过程进行马尔可夫决策过程的建模,并使用异步优势演员评论家算法对该过程进行优化,通过学习到深层的上下文特征,以提升三维模型的分割结果.在公共数据集ShapeNet上的实验结果表示,所提算法可提升三维模型语义分割的表现性能.

    三维模型语义分割八叉树网络上下文强化强化学习

    基于知识图嵌入的协同过滤推荐算法

    张屹晗王巍刘华真谷壬倩...
    3590-3596页
    查看更多>>摘要:利用知识图谱进行推荐的一个巨大挑战在于如何获取项目的结构化知识并对其进行语义特征提取.针对这一问题,提出了一种基于知识图嵌入的协同过滤推荐算法(KGECF).首先从Freebase知识图谱中提取与项目相关的知识信息,并与历史交互项目进行链接构建子知识库;然后通过基于TransR的Xavier-TransR方法得到子知识库中实体、关系表征;设计一种端到端的联合学习模型,将结构化信息与历史偏好信息嵌入到统一的向量空间中;最后利用协同过滤方法进一步计算这些向量并生成精确的推荐列表.在MovieLens-1 M和Amazon-book两个公开数据集上的实验表明,该算法在推荐准确率、召回率、F1值和NDCG四个指标上均优于基线方法,能够集成大规模的结构化和非结构化数据,同时获得高精度的推荐结果.

    推荐系统协同过滤知识图嵌入联合学习

    基于分层社交关系的微博推荐算法

    徐建民申永平吴树芳
    3597-3603,3610页
    查看更多>>摘要:针对现有微博推荐中未考虑分层关系对兴趣影响的问题,提出一种基于分层社交关系的微博推荐算法.首先基于时间窗口计算相对亲密强度与社交增长率来构建分层网络;其次在网络中量化影响力、吸引力、交互紧密度来挖掘目标用户潜在兴趣;然后依据短文本扩展策略获取目标用户显性兴趣;最后将潜在兴趣与显性兴趣融合,计算融合兴趣与待推荐微博的相似度实现推荐.实验结果表明,与经典的微博推荐方法相比,该算法在准确率、召回率、F值、MRR上均优于其他方法,最高提高了14.73%.由实验结果可知,综合考虑潜在兴趣和显性兴趣可以提高微博推荐效果.

    分层社交潜在兴趣显性兴趣推荐

    基于DESMID-AD动态选择的类别不平衡信用评估模型

    向欣陆歌皓
    3604-3610页
    查看更多>>摘要:针对现实信用评估业务中样本类别不平衡和代价敏感的情况,为降低信用风险评估的误分类损失,提出一种基于DESMID-AD动态选择的信用评估集成模型,根据每一个测试样本的特点动态地选择合适的基分类器对其进行信用预测.为提高模型对信用差客户(小类)的识别能力,在基分类器训练前使用过采样的方法对训练数据作类别平衡,采用元学习的方式基于多个指标进行基分类器的性能评估并在此阶段设计权重机制增强小类的影响.在三个公开信用评估数据集上,以AUC、一型、二型错误率以及误分类代价作为评价指标,与九种信用评估常用模型做比较,证明了该方法在信用评估领域的有效性和可行性.

    信用评估类别不平衡代价敏感动态选择动态集成选择集成学习

    面向HYCOM的高分辨率海洋数据同化并行算法优化

    曹连雨张桂赵肖俊敏洪学海...
    3611-3616页
    查看更多>>摘要:HYCOM(hybrid coordinate ocean model)海洋数值模式要求较高的吞吐量和相对较小的计算量,这给并行算法设计带来了巨大的挑战.针对具有高吞吐量的海洋数据同化问题,设计了一种基于区域分解的并行优化算法.首先,提出了一种灵活的文件访问方法,可以高效地从磁盘读取大量的数据,避免数据访问冲突,大幅降低磁盘寻址操作的频率.此外,设计了一种避免通信的策略,以一些额外的计算量为代价大幅减少进程间的通信量.最后,提出了一种基于管道流的通信策略,以实现无冲突的消息传递.实验结果表明,该算法与基线算法相比,总体性能提高了5倍,其中文件读取速度提升6倍,进程间的通信性能提升了2.7倍.

    数据同化I/O优化通信优化并行计算区域分解

    基于图神经网络与深度学习的商品推荐算法

    冯兴杰生晓宇
    3617-3622页
    查看更多>>摘要:基于图神经网络的推荐算法可以提取传统方法无法提取用户与商品之间的关联关系.目前此类算法大多忽略了用户和商品的评论数据中所存在的一般偏好.针对这一问题,提出了一种方法,在利用图神经网络提取关联关系的同时,利用深度学习提取评论的优势提取用户和商品的一般偏好,并进行特征融合来提升推荐效果.在四组公共数据集中进行了对比实验,使用召回率和归一化折损累计增益作为评价指标,并通过消融实验验证了方法的有效性.实验表明该方法比已有相关算法的效果更好.两种网络的特征融合对推荐效果有提升作用.

    推荐系统图神经网络深度学习注意力机制

    动态串行机制多元宇宙优化算法

    杨文珍何庆
    3623-3628,3633页
    查看更多>>摘要:为优化多元宇宙算法求解函数最优值的性能,提出一种改进搜索机制的全局优化多元宇宙算法(G-MVO).针对标准算法存在单一搜索机制导致算法易陷入局部最优以及过早收敛的缺陷,提出三种学习策略来增强算法性能,通过多策略交互协作降低算法复杂度并提高求解精度,设计自适应参数动态选择最佳策略,全局优化算法性能.为验证算法的有效性,算法在不同维度的八个基准函数上进行仿真实验.结果表明,该算法表现出更佳的求解精度以及收敛速度.

    多元宇宙优化算法正余弦算子高斯位移反向学习莱维飞行

    基于头脑风暴算法的FastSLAM2.0算法

    朱代先王明博刘树林郭苹...
    3629-3633页
    查看更多>>摘要:针对FastSLAM2.0算法粒子权值退化与粒子多样性丧失导致机器人定位建图精度下降的问题,提出了基于头脑风暴算法改进FastSLAM2.0算法.通过头脑风暴算法替换FastSLAM2.0算法重采样过程,首先将重要性采样后的粒子权值作为头脑风暴算法中个体评判的适度值,根据适度值大小差异完成K-means聚类操作;其次对聚类后的集合进行变异操作,并取消头脑风暴算法中个体选择操作,从而实现改进头脑风暴算法替代FastSLAM2.0算法重采样过程,缓解粒子的贫化现象,增加粒子多样性,最终实现对机器人定位建图精度的提升.在机器人定位建图实验中,对比经典FastSLAM2.0算法和基于遗传算法改进FastSLAM2.0算法,提出的算法定位精度最高,相较于经典FastSLAM2.0算法,提出算法定位精度提升了63%,稳定性提升了55%.

    机器人同时定位与建图FastSLAM2.0头脑风暴算法粒子权值退化粒子贫化重采样

    改进麻雀搜索算法求解作业车间调度问题

    刘丽娜南新元石跃飞
    3634-3639页
    查看更多>>摘要:针对最小化完工时间的作业车间调度问题(JSP),提出改进麻雀搜索算法(ISSA).首先设计有效的编码转换方式,形成JSP离散决策空间与麻雀搜索算法(SSA)连续搜索空间的对应关系.然后,针对SSA在求解后期易陷入局部最优,利用量子计算、正余弦搜索和警戒者数量递减策略对SSA进行改进,同时引入多邻域搜索和高斯扰动策略以弥补SSA在求解离散问题时深度发掘能力不足的弊端.最后,进行FT、LA系列10个测试问题、6种算法和2个应用实例的对比实验.结果表明,ISSA在求解JSP时,能获得更好的最小值、平均值和寻优成功率,验证了ISSA求解JSP的有效性.

    麻雀搜索算法作业车间调度量子计算正余弦搜索多邻域搜索高斯扰动策略

    融合Lévy飞行和精英反向学习的WOA-SVM多分类算法

    何小龙张刚陈跃华杨尚志...
    3640-3645页
    查看更多>>摘要:元启发算法-SVM是多分类评价模型的典型架构,在多分类综合决策判定中具有重要的理论与实践意义,为此提出了一种融合Lévy飞行和精英反向学习的鲸鱼优化算法(Lévy flight and elite opposition-based whale optimization algorithm,LFEO-BWOA)-SVM多分类评价算法.利用Lévy飞行策略替代螺旋轨迹策略更新位置信息,有效克服了鲸鱼优化算法易陷入局部寻优的不足;引入精英反向学习机制增加种群多样性,提高了鲸鱼优化算法全局寻优的能力.实验仿真结果表明,LFEO-BWOA-SVM算法在分类准确率上比传统SVM、BP神经网络分别提高17.84%和4.51%,准确率为98.73%,在训练时间上比标准WOA-SVM和PSO-SVM分别缩短了9.34%和84.94%.实验结果证明,LFEO-BWOA-SVM算法的寻优能力和收敛速度均有明显提升,准确率和快速性良好.

    多分类支持向量机鲸鱼优化Lévy飞行精英反向学习