首页期刊导航|计算机应用研究
期刊信息/Journal information
计算机应用研究
四川省电子计算机应用研究中心
计算机应用研究

四川省电子计算机应用研究中心

刘营

月刊

1001-3695

arocmag@163.com

028-85249567

610041

成都市成科西路3号

计算机应用研究/Journal Application Research of ComputersCSCD北大核心CSTPCD
查看更多>>本刊创刊于1981年,以其新颖性、技术性、实用性、工具性、知识性于一身,设置众多栏目,信息量极大,反映并涵盖了当今国内外计算机应用研究的主流技术、热点技术及最新发展趋势,是一份极具收藏价值的技术刊物。本刊读者对象为从事计算机应用、开发、研究的科技人员,大中专院校师生,各企事业单位技术人员,计算机业余爱好者及相关管理、情报工作者订阅、收藏。本刊现为中国计算机学会会刊,中国科技论文统计源核心期刊,全国中文核心期刊,中国科学引文数据库来源期刊, 中国学术期刊综合评价数据库来源期刊,并为多个检索数据库收录,在国内科技期刊评比中多次荣获优秀科技期刊奖。
正式出版
收录年代

    基于最小类内方差的伪三维残差网络

    谢超宇秦玉张开放王晓明...
    3801-3807页
    查看更多>>摘要:作为一种提取视频时空特征的深度学习方法,伪三维残差网络(pseudo-3D residual net,P3D ResNet)利用SVM目标函数来驱动深度网络学习,这样该方法继承了SVM的不足——仅考虑了不同类别间的间隔,忽略了同类样本数据的分布信息.针对该问题,提出了基于最小类内方差的伪三维残差网络方法,不仅体现了大间隔原理,同时又利用了样本数据的分布信息.该方法首先使用P3D ResNet提取的特征向量计算类内散度矩阵;然后利用该矩阵构建了新的目标函数;最后通过新构建的目标函数来驱动P3D ResNet的学习.将该方法应用到行为识别领域,多个数据集上的实验结果表明,相比于传统的P3D ResNet,所提出的方法获得了更高的识别准确率,体现出了更好的泛化性能.

    深度学习伪三维残差网络支持向量机类内散度矩阵行为识别

    轻量型图像分类神经网络改进研究

    王光宇张海涛
    3808-3813,3830页
    查看更多>>摘要:当前普遍使用的轻量型神经网络仍然存在计算量与参数量过大的问题,导致算力较低的廉价移动设备无法快速完成图像分类任务.针对此问题提出了一种更适合于应用在算力较低的廉价移动设备上的轻量型神经网络,引入了代价较小的线性操作与特征图合并操作用于减少神经网络的计算量与参数量,还引入了改进的残差结构、注意力机制和标签平滑技术用于提高结果判断的准确率.基于PD-38数据集的实验表明,该神经网络相比传统的轻量型神经网络使用较小的计算量与参数量可以达到较高的分类准确率.在公共数据集CIFAR-10上的实验进一步表明该神经网络具有通用性.

    卷积神经网络注意力机制图像分类残差网络

    基于空间特征变换与反投影的渐进式图像超分辨

    秦玉谢超宇王晓明陈子鎏...
    3814-3819页
    查看更多>>摘要:基于深度网络的单帧图像超分辨(SISR)方法为目前SR研究热点,但是多数该类方法在特征提取时主要侧重在网络深度结构的探索,忽略了中间空间特征层之间的相似性,并且在重构时忽略了特征层之间的特征差异性.针对上述问题,提出了基于空间特征变换与反投影重构的渐进式网络.该方法的主要特征是,在图像特征提取时对特征空间进行特征仿射变换,从而获得渐进式特征和空间变换特征,增加特征层间的不同相似性.在图像重构阶段,重构模块采用多尺度反投影的策略融合了图像多源特征,从而使得其模块更加注重特征之间的差异性.实验结果表明,相比大多数超分辨算法,所提方法在图像超分辨重建时PSNR/SSIM等评估指标均有较大提升,且重构图像的纹理信息也更加丰富.

    超分辨率空间特征变换反投影网络渐进式上采样深度学习

    基于门控卷积残差网络的卫星图像道路提取

    肖昌城吴锡
    3820-3825页
    查看更多>>摘要:针对遥感影像中道路信息容易受到建筑物、植被等非道路信息干扰的问题,提出了一种基于门控卷积残差网络的遥感影像道路提取模型.首先,该网络使用ResNet101作为网络的编码器,在使得网络足够深的同时,也保证了梯度信息的有效传导;其次,在中心部分使用ASPP多尺度特征提取模块,进一步挖掘特征图中给予的信息;最后,使用门控卷积替换普通的卷积层,它可以根据特征图中参数的重要性,自适应分配权重,作为网络的解码器部分.该方法在CVPR DeepGlobe 2018道路提取挑战赛的数据集上进行了验证,平均交并比、Dice相似系数、召回率分别达到70.20%、82.06%、82.21%,均超过该赛事冠军DlinkNet34,提升了道路提取的效果.

    道路提取图像分割门控卷积残差网络遥感影像

    面向细粒度图像的数据关联代理损失

    苟光磊杨雨朱东旭
    3826-3830页
    查看更多>>摘要:现有度量学习方法中基于元组的损失训练速度慢、基于代理的损失未考虑数据间细粒度的语义关系.针对这些问题,结合两者的优势提出了一种面向细粒度图像的数据关联代理损失(data relation proxy loss,DRPLoss)函数.采用具有批量归一化(BN)层的inception网络作为嵌入网络,在度量空间中利用梯度相互交互学习数据间的相关关系,并使用温度缩放调节DRPLoss对嵌入向量进行监督训练.在CUB-200-2011和Car-196数据集上验证了不同嵌入维度的DRPLoss的有效性,recall@1评价指标分别提升了2%和6.4%.实验结果表明,相比基于元组的损失和基于代理的损失,DRPLoss的训练速度更快,对细粒度图像检索的性能有显著性提高.

    深度度量学习损失函数细粒度图像嵌入网络

    基于骨骼特征Hough变换的行为识别研究

    周同驰张毫瞿博阳王延召...
    3831-3834,3840页
    查看更多>>摘要:为有效地表征人体行为的时空特征,将骨骼特征通过Hough变换后建立人体的动作表示.具体来说,采用OpenPose获取视频帧人体骨骼关键点,之后构建骨骼关节并映射到Hough空间,将骨骼关节轨迹转换为点迹,然后角度和轨迹特征的FV(Fisher vector)编码融合作为线性SVM分类器的输入.在经典公共数据集KTH、Weizmann、KARD和Drone-Action上,实验结果表明Hough变换提升了特征的鲁棒性,提高了人体行为识别的性能.

    行为识别Hough变换时空特征骨骼特征

    基于融合多层卷积特征的显著性区域提取

    杨金凯王国中
    3835-3840页
    查看更多>>摘要:针对目前卷积神经网络提取图像特征不充分导致的显著性提取效果不明显的问题,提出了一种多层卷积特征融合的自编码显著性区域提取算法.在使用卷积网络提取图像特征时,其浅层卷积特征一般提取的是图像的细节特征如颜色、纹理和位置特征,深层次卷积特征一般是图像的语义特征,在编码层将浅层卷积特征经过下采样融合到深层次的卷积特征中,并将深层次卷积特征进行上采样融合到浅层卷积特征中,实验表明这样可以大大提高编码质量;在解码中将编码时的卷积特征也进行融合,可以获取到解码丢失的信息进而得到更优的解码图像.此外还设计了逐层监督的方式来指导解码层的训练,即用标准的区域提取图进行下采样作为每一层解码层的标准图进行监督训练.实验结果表明,该方法可以在PAGRN的基础上将F度量平均提升0.071,平均绝对误差MEA平均降低0.031.

    特征融合显著性区域提取自编码卷积神经网络