查看更多>>摘要:This paper is concerned with the following attraction-repulsion chemotaxis sys-tem with p-Laplacian diffusion and logistic source:{ut=(▽).(|(▽)u|p-2(▽)u)-x(▽)·(u(▽)v)+ξ(▽)·(u▽w)+f(u),x ∈ Ω,t>0,vt=△v-βv+αuk1,x ∈ Ω,t>0,0=△w-δw+γuk2,x ∈ Ω,t>0,u(x,0)=uo(x),v(x,0)=v0(x),w(x,0)=wo(x),x ∈ Ω.The system here is under a homogenous Neumann boundary condition in a bounded domainΩ C Rn(n ≥ 2),with x,ξ,α,β,γ,δ,k1,k2>0,p ≥ 2.In addition,the function f is smooth and satisfies that f(s)≤ κ-μst for all s ≥ 0,with κ ∈ R,p>0,1>1.It is shown that(ⅰ)if l>max{2k1,2k1n/2+n+1/p-1},then system possesses a global bounded weak solution and(ⅱ)ifk2>max{2k1-1,2k1n/2+n+2-p/p-1}with l>2,then system possesses a global bounded weak solution.