首页期刊导航|计算机技术与发展
期刊信息/Journal information
计算机技术与发展
陕西省计算机学会
计算机技术与发展

陕西省计算机学会

王守智

月刊

1673-629X

ctad@vip.163.com

029-85522163

710054

西安市雁塔路南段99号

计算机技术与发展/Journal Computer Technology and DevelopmentCSTPCD
查看更多>>《计算机技术与发展》期刊,原名《微机发展》,中国计算机学会会刊,中国科技核心期刊、中国科技论文统计源期刊。中国学术期刊综合评价数据库统计源期刊,中国核心期刊数据库收录期刊,中国期刊全文数据库收录期刊,万方数据资源系统数字化期刊群上网期刊,中国学术期刊(光盘版)全文收录期刊。中国计算机学会和陕西省计算机学会共同主办。刊名为著名科学家胡启恒院士亲笔所提,中国计算机学会名誉理事长张效祥院士写了创刊词。1991年创刊,国内统一刊号CN61-1450/TP,国际刊号:ISSN 1673-629X。该刊为综合性学术技术刊物、月刊。该刊在国内外有广泛的覆盖面,国内读者分布在全国30个省市,国际读者分布在北美、西欧、韩国、日本以及我国港、澳、台等38个国家和地区。几年来高水平的论文刊登数量明显增加,各类自然科学基金论文刊登数量已超过80%,各项指标在我国自然科学自动化、计算机类(TP)多种期刊中排名前列,已成为全国最具影响力的自然科学杂志之一。 该刊在我国计算机界有广泛的作者群体,主要稿件来源单位有:北京大学、清华大学、南京大学、复旦大学、同济大学、浙江大学、中国科学技术大学、国防科技大学、上海交通大学、西安交通大学、北京航空航天大学、南京航空航天大学、华中科技大学、哈尔滨工业大学、西北工业大学、吉林大学、武汉大学、中山大学、四川大学、山东大学、厦门大学、天津大学、重庆大学、中南大学、东北大学、上海大学、福州大学、安徽大学、西北大学等全国数百所重点大学以及中国科学院、中国航空、航天、电子、中国水电、中国建筑、中国测绘科学研究院等重点研究院所等。 刊载内容涉及国内外计算机科学的发展方向、技术和创新的最新成就、软件工程的最新成果、应用开发的成功经验等,在学术界有较好的影响。为我国计算机的创新、设计、开发、应用创造了一个宽舒和谐的学术交流的氛围,提供了一个良好的学术、技术展示的平台,成为我国计算机和嵌入式系统领域最具有代表性的前沿性的刊物之一。该刊的编委是来自北京大学、清华大学、南京大学、复旦大学等九所知名大学和七所重要研究所,以及美国、加拿大的外籍专家共22位著名教授或研究员组成。以沈绪榜院士为首的编委会顾问组把握着期刊的大方向.
正式出版
收录年代

    基于二进制标签松弛模型的遮挡人脸识别

    韩肖马祥
    1-6页
    查看更多>>摘要:遮挡人脸识别是人脸识别系统面临的挑战之一.在自然场景下,人脸特征通常被口罩等物品遮挡,导致人脸特征不完整,从而无法正确提取人脸特征信息,严重影响最终的识别结果.针对有遮挡条件下人脸识别效果较差的问题,通过利用低秩技术和二进制标签松弛模型的优势,该文提出了一种新的基于二进制松弛标签的回归模型.该模型通过学习一个更松弛的标签矩阵来代替严格的0-1标签矩阵,从而扩大了样本之间的类间距离,同时对二进制松弛标签矩阵采用低秩约束,以提高样本的类内相似性.因此,该方法能够提取出更多具有判别性的特征,从而有利于遮挡条件下的人脸识别.此外,通过引入的正则化项,有效避免了该方法的过拟合问题.在Yale B、LFW和CMU PIE数据集上的实验结果表明,该方法不仅能在实验室环境下获得较高的识别率,在自然场景下仍然能取得较好的识别性能.

    人脸识别低秩技术二进制松弛标签特征提取遮挡

    基于不确定性推理的活动识别方法研究

    戴丹管有庆龚锐
    7-12页
    查看更多>>摘要:活动识别已成为智能家居领域的研究热点,目前国内外有关活动识别方法的研究有很多,研究人员提出了不同的方法来进行活动建模和识别,可分为数据驱动方法和知识驱动方法.数据驱动方法容易受到维数的限制,并且需要大量的数据集来训练出活动模型.目前在有关活动识别研究的方法中缺少一种既能够考虑到异构数据之间的知识共享,又能够考虑到活动的不确定性的方法.该文将D-S理论(Dempster-Shafer theory,证据理论)和本体推理结合起来,在改进的证据合成规则的基础上提出了ER-OT(evidential reasoning-ontology,证据-本体推理)算法,解决了活动中的不确定性和推理结果之间的冲突.算法首先在加权分配的思想上按重新定义的冲突系数对证据合成规则进行改进,在推理时推理机将推理信息同时输入到Jena本体推理和改进的证据推理模块,然后将推理结果按改进的证据合成规则进行合成得到最终的推理结果.实验结果表明,与现有的马尔可夫逻辑网络算法和传统的本体推理算法相比,该算法提高了不确定性活动的识别准确率.

    活动识别本体推理D-S理论智能家居不确定性

    基于2D激光雷达的SLAM算法研究综述

    沈斯杰田昕魏国亮袁千贺...
    13-18,46页
    查看更多>>摘要:移动机器人导航功能的实现需要同时定位与建图(simultaneous localization and mapping,SLAM)和路径规划这两方面的技术,其中由SLAM技术生成的栅格地图是移动机器人运用路径规划算法的前提.2D激光SLAM由于其建图精度较高、性能稳定且价格便宜,在室内移动机器人中应用十分广泛.2D激光SLAM是指移动机器人在自身所处环境及位置先验信息未知的情况下,以2D激光雷达为主要传感器,感知周围环境信息,从而实现自身位姿的估计和地图的构建.将2D激光SLAM分为两部分,第一部分从激光测距原理入手,对三角法和飞行时间法进行了详细介绍和优缺点比较.第二部分从前端扫描匹配、后端优化、回环检测和地图构建这四个方面分别详细阐述了2D激光SLAM系统框架.同时对主流2D激光SLAM算法进行了深入分析和优缺点比较,并对激光SLAM未来的发展进行了展望.

    2D激光SLAM前端扫描匹配后端优化回环检测地图构建

    基于多目标优先级粒子群算法的资源调度策略

    朱新峰吴名位王国海
    19-24页
    查看更多>>摘要:移动边缘云计算是5G技术的核心之一,也是当下非常热门的通信技术.但当前移动用户数量迅猛增长,传统资源分配方式已不能满足用户需求,因此根据用户的规模及其任务优先级的实时变化,如何合理制定资源分配策略来满足用户对计算单元、存储空间、软件等资源的需求是当下十分热门的研究方向.该文提出了一种基于多目标优先级粒子群算法的边缘云资源调度算法(MPPSO),合理布局多个边缘基站,形成边缘云.在多用户多任务并发时,综合用户数据传输速率、任务能耗、任务优先级和边缘基站性能等多方面因素,设计了两个适应度函数和一种粒子编解码方法,同时引入了帕累托控制机制,协助策略搜索多目标优先级最优解,为边缘云提供最优的资源调度策略,便于实时满足不同用户不同任务的资源需要,不仅使边缘云资源得到了充分利用,也大大提高了用户的使用体验.最后通过实验验证了该算法的有效性.

    多目标边缘云计算粒子群资源调度传输速率任务能耗帕累托

    基于改进的ResNet网络的人脸表情识别

    周婕马明栋
    25-29页
    查看更多>>摘要:近几年来,人工智能的热度一直居高不下,其中作为人机交互的一种重要方法—人脸表情识别已经成为计算机视觉研究的热点.从传统的机器学习算法到现在的深度学习,识别效率也在不断地提高,为了进一步提高人脸表情识别率,在传统的卷积神经网络的基础上,提出了一种基于改进的ResNet卷积神经网络的表情识别方法.该方法基于ResNet网络的基本结构,采用的中间卷积部分是前后各一个卷积核为1*1的卷积层,中间是卷积核大小为3*3的卷积层,同时将下采样移到后面的3*3卷积层里面去做,减少信息的流失,并用PReLU替代ReLU激活函数.与ResNet模型相比,改进的网络结构可以减少计算量,提高识别速度和识别率.利用Tensorflow构建经过改进的ResNet卷积神经网络框架,并在增强的Fer2013数据集上进行了训练,得到了准确且高效的人脸表情识别模型,最后再结合OpenCV中的人脸检测分类器,从视频中抓取人脸进行识别,实现了实时识别人脸表情效果的输出.实验结果表明,改进的ResNet卷积神经网络模型较其他的人脸表情识别方法在识别率上有了一定的提高.

    表情识别深度残差网络深度学习OpevCV人脸检测

    基于灰狼算法的民航维修人为差错评价模型

    麻鹰王瑞
    30-34页
    查看更多>>摘要:随着民航运输业的迅猛发展,航空运输量和排班量大幅度增加.航空器在可靠性和安全性等诸多方面都有了大幅度提升.由机械故障导致的安全事故比例从80%下降到了20%,而维修过程中的人为差错占比却直线上升,成为影响民航安全、飞行安全及运行成本的重要因素.因此,民航业对于人为差错备受关注.为了降低民航维修中人为差错的发生几率,提高维修生产和适航质量,该文提出了4个层面、18个影响民航维修人为差错的因子.以东航虹桥基地为例,采用了问卷调查收集数据;通过灰狼算法(grey wolf optimization,GWO)结合粒子群算法(particle swarm optimization,PSO)以及增加三种改进策略,提出一种惯性自适应混合灰狼算法(inertial adaptive hybrid grey wolf optimization,IAHGWO);并构建了惯性自适应混合灰狼算法训练径向基函数神经网络(radial basis function neural network,RBFNN)评价模型;结果表明该评价模型具有良好的实用性及准确性,弥补了现阶段民航企业适航质量监管体系对维修人员个体的人为差错管控中针对性、实时性、预见性上的不足.

    适航质量人为差错灰狼算法径向基函数神经网络粒子群算法评价模型

    基于优化BP神经网络的销售预测算法研究

    孙艳文詹天明
    35-39页
    查看更多>>摘要:已知国内房屋售价具有一定的不完整的规律性,其会因季节变换、人群流动、国家相关政策等一系列因素而呈现一定的规律.与此同时,该规律性并没有确定的单一因子可以直接影响,故其售价与全部因素之间的关系也是非线性的.针对这一问题,利用神经网络输入量的非线性、冗杂性和可不完整性,对一段时期内的房屋售价进行预测是一种合理的预测方法.基于BP神经网络传输阈值的不确定性,利用时间序列方法对因子数据进行平行预测,再利用遗传算法和BP神经网络对所得结果进行二次优化,以达到接近实际的精准预测的目的.经过使用某房地产企业的历史销售数据进行反复仿真实验,其结果表明所提出的优化算法模型预测精度逼近于实际销售结果,达到了精准预测的目标.

    时间序列优化BP神经网络遗传算法销售预测BP神经网络

    基于有责量和免责量的谣言溯源算法

    叶增炜王友国柴允
    40-46页
    查看更多>>摘要:复杂网络中的谣言溯源问题一直是学者们的研究重点,随着互联网技术和社交网络的发展,如何快速准确地确定网络中的谣言源以削减其不良影响显得尤为重要.考虑到谣言源是网络中最早感染的节点,即拥有最大的节点年龄,通过对节点的未受感染邻居所表现出的免责量进行研究,综合免责量与节点年龄之间的关系,提出基于有责量和免责量的谣言溯源算法,同时为了减少计算成本,选取高介数中心性节点作为可疑集.结合现实网络中谣言发展的真实情形,将算法推广至网络中双源情况,基于优化的谱分析方法将感染网络划分为两个社区,将复杂双源问题转化为单源问题.在几个合成与真实网络中进行的仿真实验结果表明,在单源和双源的情况下,提出的溯源算法能够快速有效地识别到谣言源,在多个网络中溯源结果的平均误差距离小于1跳,相较于其他启发式算法具有一定的优越性,同时,在高度稀疏性的网络中,性能表现良好.

    复杂网络谣言溯源免责量介数中心性社区划分

    基于二进制编码的Apriori增量更新算法研究

    罗章铭唐杰黄逸奇张锦...
    47-53页
    查看更多>>摘要:针对经典Apriori算法在迭代过程中频繁扫描数据库,且动态数据更新后需要重新处理数据的不足,提出一种基于二进制编码的增量更新改进CBEF-Apriori算法.该算法的核心思想是将添加增量后的项集、事务转换成二进制编码,从而将计算项集支持度转化为项集与事务数据库的二进制编码位运算过程.改进算法筛选原数据库生成的频繁项集与增量数据库新生成的候选项集,有效减少了候选项集的规模,提高算法效率的同时更符合现实需要.实验结果表明,相比于经典Apriori算法和CBE-Apriori算法,改进算法在挖掘出正确频繁项集的数量不降低的情况下,明显提升了计算效率,在小数据规模下相比经典Apriori算法最高提升3.6倍,相比CBE-Apriori算法最高提升1.4倍.在较大数据规模下相比经典Apriori算法最高提升10.41倍,相比CBE-Apriori算法最高提升11.53倍.

    数据挖掘Apriori算法关联规则二进制增量更新

    多类别文本分类方法比较研究

    于卫红
    54-60页
    查看更多>>摘要:文本分类特别是多类别文本分类问题是非常重要的经典问题,在舆情监测、新闻推荐、在线评论情感分析等领域有着广泛的应用.目前,可用于多类别文本分类的算法很多,但每个算法都有其特定的假设和优缺点.为了帮助使用者或研究者更好地选择和改进分类方法,设计了多类别文本分类方法比较方案,综合考虑了文本特征表示方法和分类算法两个维度,对3种文本特征表示方法和5种分类算法进行组合,形成15种分类模型作为比较对象.基于所设计的比较流程,以从媒体阅读网站SKIP-GRAM爬取SKIP-GRAM的3000条不同类别的资讯文本为研究语料,对15种模型在不同数据规模下进行若干次比较后,以Kappa系数和运行时间作为评估指标.综合评估后认为:使用词嵌入进行文本特征表示无论在分类模型的运行速度上还是分类效果上都具有明显的优势,KNN+CBOW、SVM+CBOW、朴素贝叶斯+CBOW都是解决多类别文本分类问题较佳的模型.

    文本分类多类别机器学习文本特征表示分类算法