首页期刊导航|液晶与显示
期刊信息/Journal information
液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会
液晶与显示

中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

郭海成

双月刊

1007-2780

yjxs@ciomp.ac.cn

0431-86176059;84613406

130033

长春市东南湖大路3888号

液晶与显示/Journal Chinese Journal of Liquid Crystals and DisplaysCSCD北大核心CSTPCD
查看更多>>《液晶与显示》是中国最早创办的液晶学科专业期刊,是中国惟一的液晶学科和显示技术领域中综合性专业学术期刊;它是中文核心期刊,是英国《科学文摘》(SA)、美国《化学文摘》(CA)、俄罗斯《文摘杂志》(PЖ)、美国《剑桥科学文摘》(CSA)、“中国科技论文统计源期刊”等20余种国内外著名检索刊物和文献数据库来源期刊;它是中国物理学会液晶分会会刊,是中国光学光电子行业协会液晶分会会刊,是中国专业学术期刊发行量最大的期刊之一。本刊以研究报告、研究快报、综合评述和产品信息等栏目集中报道国内外液晶学科和显示技术领域中最新理论研究、科研成果和创新技术,及时反映国内外本学科领域及产业信息动态,是宣传、展示我国该学科领域和产业科技创新实力与硕果,进行国际交流的窗口。本刊征集有关液晶和各类显示用材料及制备方法、各类显示器件物理和制作技术、各类显示新型模式和驱动技术、显示技术应用、显示材料和器件的测试方法与技术、各类显示器件的应用等研究论文。本刊刊发国家重大科技项目和国家自然科学基金、"973"、"863"、等项目及省、部委基金项目的文章达90%以上,并有许多成果已通过国家和省部级鉴定,获得较大的社会效益和经济效益,为我国显示技术的飞速发展做出了重大贡献。
正式出版
收录年代

    NCA-MobileNet:一种轻量化人脸表情识别方法

    左义海白武尚何秋生
    522-531页
    查看更多>>摘要:针对目前人脸面部表情识别方法存在参数量多、计算资源消耗大和识别精度低的问题,提出了一种基于条件协调注意力机制的轻量化人脸面部表情识别方法.首先,对MobileNet V3网络层数进行缩减,同时将倒残差结构中间通道数和输出通道数增大至原来的1.5~3.2倍,使用Mish代替Hardswish激活函数,实现特征提取后的非线性化.其次,引入改进的协调注意力机制,在张量信息嵌入中沿水平和竖直方向依次通过最大池化和平均池化进行编码,并通过张量信息集成产生具有全局感受野和精确位置信息特征,提取面部表情在空间和通道位置上的详细信息.最后,在公开数据集FERPlus和RAF-DB上进行实验,结果表明所提方法参数量降低15.91%,准确率分别为88.84%和85.90%,比改进前模型准确率分别提升0.83%和1.39%.该方法具有良好的识别性能,验证了所提方法的有效性.

    表情识别轻量化注意力机制特征提取

    基于主干增强和特征重排的反无人机目标跟踪

    郑滨汐杨志钢丁钰峰
    532-542页
    查看更多>>摘要:视频图像中面向无人机的目标跟踪是反无人机任务中的重要一环.无人机低空飞行背景复杂,同时在视频图像中目标像素占比较小,都给目标跟踪增加了难度.针对以上问题,以SiamRPN++为基础,提出了一种引入改进的主干网络和特征重排的孪生神经网络目标跟踪算法(SiamAU).首先,在主干网络中加入ECA-Net注意力机制网络,同时对激活函数进行改进,以提升复杂背景下的特征表征能力;然后,对主干网络输出的浅层特征进行浅层降维并与后三层深层特征进行融合,得到更适合无人机等小目标跟踪的改进深度融合特征.在DUT Anti-UAV数据集上,SiamAU算法的成功率和精确率达到了60.5%和88.1%,相比基准算法提升了5.6%和8.1%.在两个公开数据集上的测试结果表明,在反无人机场景中SiamAU算法的跟踪表现优于目前主流的算法.

    反无人机目标跟踪孪生网络注意力机制特征重排

    基于ARM嵌入式平台的车道线检测算法

    关恬恬杨帆
    543-552页
    查看更多>>摘要:针对现有车道线检测算法在实际应用中难以平衡检测精度和速度的问题,提出一种全新的基于ARM嵌入式平台的车道线检测算法.首先,设计一个轻量化语义分割网络,在优化SegNet结构的同时在网络第一层加入跳跃连接,并且在每两个卷积层后加入通道注意力机制模块,在保证检测精度的同时提升检测速度.接着,构建卡尔曼滤波车道线跟踪模型,提高检测在视频流中的鲁棒性.然后,重构编码器,对模型轻量化处理,使用深度可分离卷积代替传统的卷积以减少计算成本,提升检测速度.最后,利用TensorRT加速推理,生成Trt模型,方便其部署在ARM嵌入式平台中实现实时车道线检测.在自行制作的Tusimeple扩充数据集上的实验结果表明,所提出的算法能够应对各种复杂交通场景,检测精度达到98.03%,优于其他算法,并且其检测速度达到了50 FSP,满足实时性检测要求.本算法在复杂交通场景下具有较高的鲁棒性和有较好的实时性,具有一定的理论价值和实际应用价值.

    车道线检测语义分割深度可分离卷积TensorRT加速ARM嵌入式平台

    《液晶与显示》征稿简则

    封3页