首页期刊导航|岩石力学与岩土工程学报(英文版)
期刊信息/Journal information
岩石力学与岩土工程学报(英文版)
岩石力学与岩土工程学报(英文版)

钱七虎

季刊

1674-7755

rockgeotech@whrsm.ac.cn

027-87198182

430071

湖北省武汉市武昌区水果湖街小洪山2号

岩石力学与岩土工程学报(英文版)/Journal Journal of Rock Mechanics and Geotechnical EngineeringCSCDCSTPCD北大核心SCI
查看更多>>反映世界范围内,特别是中国岩石力学与工程的新成就、新理论、新方法、新经验、新动向,促进国内外学术交流,特别欢迎国家重大项目、国家自然科学基金项目及其他重要项目的研究成果,倡导和鼓励有实践经验的作者撰稿,并优先刊用这些稿件,本刊也发表少数侧重于工程应用的土力学方面的文章。为尽快交流最新的学术信息,本刊还发表短文和讨论文章、近期博士学位论文摘要、会议简讯、新书简介与相关的学术动态等;提倡撰写简短的讨论文章,活跃期刊学术氛围。
正式出版
收录年代

    Effect of acid type on biomineralization of soil using crude soybean urease solution

    Yajie WengHanjiang LaiJunjie ZhengMingjuan Cui...
    5135-5146页
    查看更多>>摘要:The one-phase-low-pH method is a simple,efficient,and user-friendly biogrouting technique that can effectively improve the biomineralization of enzyme-induced carbonate precipitation(EICP)using free urease enzyme.One of the most significant advantages of this method is its capacity to effectively delay calcium carbonate(CaCO3)precipitation by reducing the pH of the solution through the addition of acid.This prevents bioclogging during the biogrouting process and improves the biomineralization effect.However,the biomineralization of the one-phase-low-pH based EICP method may be influenced by the specific acid used.To investigate the impact of acid type on the one-phase-low-pH EICP method using crude soybean urease solution(CSUS),four types of acids,including hydrochloric acid(HCl),nitric acid(HNO3),acetic acid(CH3COOH),and lactic acid(C3H6O3),were used to adjust the pH of CSUS.A series of macroscopic and microscopic experiments were conducted to evaluate the effect of acid type on the one-phase-low-pH EICP method.The results indicate that the acid has an inhibition on the urease activity(UA)of CSUS.Among the acids tested,HNO3 exhibits the most pronounced inhibitory effect on the UA of CSUS,followed by HCl,and the least pronounced inhibitory effect for CH3COOH and C3H6O3 under the same pH conditions.Meanwhile,CH3COOH and C3H6O3 could provide a longer delay duration of CaCO3 precipitation than HNO3 and HCl.Therefore,the one-phase-low-pH EICP method based on CH3COOH and C3H6O3 can significantly improve the effective biocementation depth compared to that based on HNO3 and HCl.Nevertheless,the different types of acids appear to have no obvious effect on the polymorph and crystalline of the precipitated CaCO3 crystals.

    Effects of nitrogen sources on MICP-related metabolic mechanism of Sporosarcina pasteurii and soil reinforcement

    Shiyu LiuXiaozhu DingPeijian SongLifeng Hu...
    5147-5161页
    查看更多>>摘要:Sporosarcina pasteurii(S.pasteurii)is widely used in microbial-induced carbonate precipitation(MICP)due to its high urease activity.In this paper,the effects of nutrients on the metabolic mechanism and mineralization ability of S.pasteurii were studied by comparing the bacteria's growth,gene expression,and mineralized sand column under different nitrogen sources.The results showed that urea and soy peptone replacing the inorganic and organic nitrogen sources in ammonium sulfate-yeast extract(NH4-YE)medium can increase the urease activity of S.pasteurii by 11.43%and 17.10%,respectively.In the composite nitrogen source medium composed of urea and soy peptone,the urease activity of S.pasteurii increased by 25.30%.The transcriptome sequencing results showed that the modified medium of urea and soy peptone could promote the basic life activity and metabolism of S.pasteurii and is beneficial to urease expression.Among them,the gene difference between the modified urea medium and the pri-mary medium was more obvious,and the urea medium could promote the ATP synthase related to urease expression and urea hydrolysis.The unconfined compressive strength(UCS)of sand columns reinforced with S.pasteurii cultured in Urea-YE,NH4-Soy peptone and Urea-Soy peptone increased by 27.6%,36%and 58.1%respectively.The permeability decreased by 14.8%,20.1%and 81.3%respectively compared with that of sand columns reinforced with S.pasteurii cultured in NH4-YE.The higher the urease activity of cultured bacteria,the more calcium carbonate produced after mineralization reaction.In addition,the urease activity of bacteria has an influence on the morphology of calcite crystals.This study can facilitate our understanding of optimizing the culture medium of S.pasteurii and the artificial regulation of urease activity in the process of MICP.

    Effect of squeezing on construction and structural safety of the Swiss high-level radioactive waste repository drifts

    Alexandros N.NordasMatteo NataleLinard CantieniGeorgios Anagnostou...
    5162-5178页
    查看更多>>摘要:The deep geological repository for radioactive waste in Switzerland will be embedded in an approxi-mately 100 m thick layer of Opalinus Clay.The emplacement drifts for high-level waste(approximately 3.5 m diameter)are planned to be excavated with a shielded tunnel boring machine(TBM)and sup-ported by a segmental lining.At the repository depth of 900 m in the designated siting region Nordlich Lagern,squeezing conditions may be encountered due to the rock strength and the high hydrostatic pressure(90 bar).This paper presents a detailed assessment of the shield jamming and lining over-stressing hazards,considering a stiff lining(resistance principle)and a deformable lining(yielding principle),and proposes conceptual design solutions.The assessment is based on three-dimensional transient hydromechanical simulations,which additionally consider the effects of ground anisotropy and the desaturation that may occur under negative pore pressures generated during the drift excava-tion.By addressing these design issues,the paper takes the opportunity to analyse some more funda-mental aspects related to the influences of anisotropy and desaturation on the development of rock convergences and pressures over time,and their markedly different effects on the two lining systems.The results demonstrate that,regardless of these effects,shield jamming can be avoided with a moderate TBM overcut,however overstressing of a stiff lining may be critical depending on whether the ground desaturates.This uncertainty is eliminated using a deformable system with reasonable dimensions of yielding elements,which can also accommodate thermal strains generated due to the high temperature of the disposal canisters.

    A virtual calibration chamber for cone penetration test based on deep-learning approaches

    Mingpeng LiuEnci SunNingning ZhangFengwen Lai...
    5179-5192页
    查看更多>>摘要:The interpretation of the cone penetration test(CPT)still relies largely on empirical correlations that have been predominantly developed in resource-intensive and time-consuming calibration chambers.This paper presents a CPT virtual calibration chamber using deep learning(DL)approaches,which allow for the consideration of depth-dependent cone resistance profiles through the implementation of two proposed strategies:(1)depth-resistance mapping using a multilayer perceptron(MLP)and(2)sequence-to-sequence training using a long short-term memory(LSTM)neural network.Two DL models are developed to predict cone resistance profiles(qc)under various soil states and testing conditions,where Bayesian optimization(BO)is adopted to identify the optimal hyperparameters.Subsequently,the BO-MLP and BO-LSTM networks are trained using the available data from published datasets.The results show that the models with BO can effectively improve the prediction accuracy and efficiency of neural networks compared to those without BO.The two training strategies yielded comparable results in the testing set,and both can be used to reproduce the whole cone resistance profile.An extended com-parison and validation of the prediction results are carried out against numerical results obtained from a coupled Eulerian-Lagrangian(CEL)model,demonstrating a high degree of agreement between the DL and CEL models.Ultimately,to demonstrate the usability of this new virtual calibration chamber,the predicted qc is used to enhance the preceding correlations with the relative density(Dr)of the sand.The improved correlation with superior generalization has an R2 of 82%when considering all data,and 89.6%when examining the pure experimental data.

    Micromechanical modeling of hollow cylinder torsional shear test on sand using discrete element method

    Shunxiang SongPei WangZhenyu YinYi Pik Cheng...
    5193-5208页
    查看更多>>摘要:Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investigated.This paper develops a numerical model of the HCTST using the discrete element method(DEM).The method of bonded spheres in a hexagonal arrangement is proposed to generate flexible boundaries that can achieve real-time adjustment of the internal and external cell pressures and capture the inhomogeneous deformation in the radial direction during shearing.Repre-sentative angular particles are selected from Toyoura sand and reproduced in this model to approximate real sand particles.The model is then validated by comparing numerical and experimental results of HCTSTs on Toyoura sand with different major principal stress directions.Next,a series of HCTSTs with different combinations of major principal stress direction(a)and intermediate principal stress ratio(b)is simulated to quantitatively characterize the sand behavior under different shear conditions.The results show that the shaped particles are horizontally distributed before shearing,and the initial anisotropic packing structure further results in different stress-strain curves in cases with different a and b values.The distribution of force chains is affected by both a and b during the shear process,together with the formation of the shear bands in different patterns.The contact normal anisotropy and contact force anisotropy show different evolution patterns when either a or b varies,resulting in the differences in the non-coaxiality and other macroscopic responses.This study improves the understanding of the macroscopic response of sand from a microscopic perspective and provides valuable insights for the constitutive modeling of sand.

    Exploring alkali-source,pore-filling and cementation damage effects in cemented clay with typical industrial waste binders

    Xing WanJianwen DingJianhua WangPengju Gao...
    5209-5220页
    查看更多>>摘要:Various industrial waste binders(IWBs)are being recycled in soil stabilization to save cement con-sumption.However,the coupled effects brought out by combined IWBs on stabilized soils are still un-clear.IWBs are categorized into two typical categories(IWB-A and IWB-B)referring to their chemical role in this study.The alkali-source effect,pore-filling effect and cementation damage effect by IWBs in soil stabilization are explored.A series of mechanical and microscopic tests is performed on stabilized clay with different proportions of IWB-A and IWB-B.Moreover,initial water contents and cement contents of cement-stabilized clay are varied to examine the evolution of coupled effect with void ratio and cementation level.The results indicate that the alkali-source effect strengthens the cementation bonds and increases the early strength by 0.5-1.3 times,whereas the pore-filling effect improves the micro-fabric especially for the specimen with a large void ratio.The alkali-source effect increases soil cohesion cu at the pre-yield stage,and the pore-filling effect increases frictional angle φu at the post-yield stage.The cementation damage effect is remarkable at a low void ratio,which may result in many extruded pores among soil aggregates.The strength evolution with IWB proportions can be well stimulated by considering the coupled alkali-source effect,pore-filling effect and cementation damage effect.The optimal proportion of IWBs corresponds to an optimal combination of coupled effect.

    Revisiting mixing uniformity effect on strength of cement-based stabilized soft clay

    Tingting DengYongfeng DengMarsheal FisongaSongyu Liu...
    5221-5230页
    查看更多>>摘要:Despite the fact that mixing uniformity(i.e.the consistency of binder distribution)significantly influence the quality of ground improvement during in situ soil mixing projects,its quantitative evaluation was rarely concerned due to the difficulty of measurement from an engineering perspective.A methodology was proposed to quantitatively evaluate the mixing uniformity of stabilized soil using handheld X-fluorescence spectrometry(XRF),which is helpful to elucidate the significance of mixing uniformity on strength.In other words,the calcium content was monitored to ascertain the distribution of cement within the matrix,and a quantitative index was subsequently established.It was observed that an in-crease in mixing uniformity resulted in a transition in the behavior of the stabilized clay from a plastic to a brittle failure mode,and from a localized failure to a global shear failure under unconfined compres-sion.Subsequent observation of the destruction process revealed that cracks were more readily formed in the low cement zones and then bypass the high cement zones.Furthermore,the effect of mixing uniformity on strength is likely to be amplified with prolonged curing periods.The enhancement of uniformity would increase the volume of the high binder zones,thereby enhancing the overall high-strength performance.The proposed methodology is capable of characterizing the discreteness be-tween the tracked element's measured and theoretical contents,thusing avoiding the uncertainty associated with other indirect indicators.The convenience of the portable handheld XRF apparatus was confirmed,as it can be readily deployed in situ or ex situ to track calcium content within the stabilized mass after borehole sampling.

    Experimental and numerical modeling on vacuum consolidation behavior of staged-filled soil slurry with prefabricated horizontal drain and flocculant

    Ding-Bao SongYu PanWen-Bo ChenZhen-Yu Yin...
    5231-5248页
    查看更多>>摘要:The vacuum-assisted prefabricated horizontal drain offers a promising method for strengthening soil slurry,allowing simultaneous filling and vacuum-dewatering via staged construction.However,there is limited research on the unique characteristics of staged filling.This study aims to investigate the vacuum consolidation process of staged-filled soil slurry through laboratory model tests and numerical simula-tions,also assessing the impact of anionic polyacrylamide.Comparative analyses are conducted between vacuum consolidation with and without anionic polyacrylamide,as well as self-weight consolidation without anionic polyacrylamide.Results reveal contour lines of excess pore pressure,water content,and soil strength forming an ellipse around the prefabricated horizontal drain board.During the consoli-dation process,a higher degree of consolidation,lower water content,and higher soil strength were observed closer to the prefabricated horizontal drain board.After treatment,the uppermost filling layer exhibits an average water content that was approximately 40%higher than the lower filling layer,and its average strength was about 60%lower.This discrepancy is primarily due to the absence of sealing on the top surface and the relatively short vacuum consolidation time caused by staged filling.The introduction of anionic polyacrylamide-induced flocculation significantly improves the initial consolidation rate but minimally affects the dewatering capacity of vacuum preloading.Using flocculant can enhance both the staged filling rate and soil strength(by 1-2 times).Additionally,employing a staggered arrangement between different prefabricated horizontal drain layers is advisable to prevent top-down penetration in areas with low soil strength.

    Particle breakage of calcareous sand from low-high strain rates

    Yaru LvJieming HuDongdong ZhangYuan Wang...
    5249-5263页
    查看更多>>摘要:The influence of strain rate on the mechanics of particles is well documented.However,a comprehensive understanding of the strain rate effect on calcareous particles,particularly in the transition from static to dynamic loading,is still lacking in current literature.This study conducted 720 quasi-static and impact tests on irregular calcareous particles to investigate the macroscopic strain rate effect,and performed numerical simulations on spherical particles to explore the underlying microscopic mechanisms.The strain rate effect on the characteristic particle strength was found to exhibit three regimes:in Regime 1,the particle strength gradually improves when the strain rate is lower than approximately 102 s-1;in Regime 2,the particle strength sharply enhances when the strain rate increases from 102 s-1 to 104 s-1;and in Regime 3,the particle strength remains almost constant when the strain rate is higher than 104 s-1.The three-regime strain rate effect is an inherent property of the material and independent of particle shape.The asynchrony between loading and deformation plays a dominant role in these be-haviors,leading to a thermoactivation-dominated effect in Regime 1,a macroscopic viscosity-dominated effect in Regime 2,and a combined thermoactivation and macroscopic viscosity-dominated effect in Regime 3.These mechanisms induce a transition in the failure mode from splitting to exploding and then smashing,which increases the energy required to rupture a single bond and,consequently,enhances the particle strength.

    Investigation on solidified/stabilized behavior of marine soil slurry by lime-activated incinerated sewage sludge ash-ground granulated blast furnace slag under multifactor conditions

    Zhao SunWenbo ChenRundong ZhaoNuman Malik...
    5264-5277页
    查看更多>>摘要:This study aims to evaluate the possibility of reusing treated marine clayey soils by stabilization/solid-ification(S/S)technology as geomaterial in reclamation projects from the aspects of engineering strength,chemical modification and environmental risk assessment.The lime-activated incinerated sewage sludge ash(ISSA)together with ground granulated blast furnace slag(GGBS)was employed as the binder.The multi-controlling factors including water content,curing time,salinity,and chemical compositions of mixing solution were taken into account to identify the S/S treated Hong Kong marine deposit(HKMD)slurry based on the strength tests,pH measurement,thermo-gravimetric(TG)analysis,X-ray diffractometer(XRD),Fourier transform infrared spectroscopy(FTIR),scanning electron micro-scopy coupled with energy-dispersive spectrometry(SEM-EDS)and toxicity characteristic leaching procedure(TCLP)tests,etc.The results show that the S/S treatment using lime-activated ISSA-GGBS can effectively enhance the strength of marine soil at the initial water content of 110%and 200%.The water content and curing time have a significant impact on the S/S treated HKMD.The pH of treated soils is higher than 11.1,which proves an alkaline environment for the reactions in the treated soil.A special case is the treated HKMD at 200%water content hydrated by MgCl2 solution,which has a low pH of 10.23 and maintains a slurry state.Based on the TCLP results,the leaching concentration of heavy metals from S/S treated HKMD is environmentally safe and meets Hong Kong standard for reusing treated soil with a low level of<0.2 mg/L.The content of main products such as calcium/magnesium silicate hydrate,ettringite or Friedel's salt depends on the chemical additions(e.g.distilled water,seawater,NaCl and Na2SO4).The products in the specimens mixed with MgCl2 solutions are mainly composed of Mg(OH)2,M-S-H and MgCO3,which is distinct with the neoformations in the other cases.Therefore,this study proves that the S/S treated soil slurry could be reused as geomaterials in reclamation projects,and the S/S process is greatly affected by water content,curing time and solution compositions,etc.