首页期刊导航|园艺学报(英文版)
期刊信息/Journal information
园艺学报(英文版)
园艺学报(英文版)
园艺学报(英文版)/CSTPCDSCI
正式出版
收录年代

    Potassium alleviated high nitrogen-induced apple growth inhibition by regulating photosynthetic nitrogen allocation and enhancing nitrogen utilization capacity

    Xinxiang XuGuangyuan LiuJingquan LiuMengxue Lyu...
    1-14页
    查看更多>>摘要:There is a close relationship between potassium(K)and nitrogen(N).However,the roles of K under high N conditions remain unclear.Using a hydroponics approach,we monitored the morphological,physiological,and molecular changes in M9T337 apple(Malus domestica)rootstocks under different nitrate(10 and 30 mmol·L-1 NO3-)and K supply(0.5,6,10,and 20 mmol.L-1 K+)conditions.Results revealed that high nitrate inhibited the root growth of M9T337 rootstocks,downregulated the expressions of K transporter genes(MdPT5,MdHKT1,and MdATK1),and reduced the net NO3- and K+ influx at the surface of roots,thereby resulting in an N/K imbalance in rootstocks.Further investigation showed that 10 mmol·L-1 K increased the activity of N metabolic enzymes(NR,GS,NiR,and GOGAT),upregulated the expressions of genes related to nitrate uptake and transport(MdNRT1.1,MdNRT1.2,MdNRT1.5,and MdNRT2.4),promoted 15N transport from the roots to the shoots,optimized leaf N distribution,and improved photosynthetic N utilization efficiency under high nitrate conditions.These results suggest that the negative effects of high nitrate may be related to the N/K imbalance and that reducing N/K in plants by increasing K supply level can effectively alleviate the inhibition of N assimilation by high nitrate stress.

    Characteristics of long-distance mobile mRNAs from shoot to root in grafted plant species

    Mengmeng FuZhen XuHuaying MaYifan Hao...
    15-27页
    查看更多>>摘要:Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing tech-nology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechanisms.Here,we analyzed the homology,motif,and tRNA-like structure(TLS)of long-distance mobile mRNAs identified by RNA-seq as well as the RNA-binding protein(RBP)in nine grafting combinations including Arabidopsis thaliana,Vitis vinifera,Cucumis sativus,Citrullus lanatus,Nicotiana benthamiana,Malus domestica,Pyrus spp.,Glycine max and Phaseolus vulgaris.Although several mRNAs were found to be shared in herbaceous,woody,and related species,the vast majority of long-distance mobile mRNAs were species-specific.Four non-specific movement-related motifs were identified,while the TLS was not necessary for mRNA long distance mobility.In addition,we found that RBPs were conserved among herbaceous and woody plants as well as related species.This paper reports a further in-depth analysis of the endogenous mechanisms by which the species-specific transportable mRNAs were selected by bioinformatics,in order to provide insights for future research on long-distance mobile mRNAs.

    Peculiarity of transcriptional and H3K27me3 dynamics during peach bud dormancy

    Yalin ZhaoYong LiKe CaoWeichao Fang...
    28-40页
    查看更多>>摘要:Bud dormancy facilitates the survival of meristems under harsh environmental conditions.To elucidate how molecular responses to chilling accumulation controlling dormancy in peach buds,chromatin immunoprecipitation sequencing to identify the H3K27me3 modifications and RNA sequencing of two peach cultivars with pronounced differences in chilling requirement were carried out,the results showed that genes associated with abscisic acid and gibberellic acid signal pathways play key roles in dormancy regulation.The results demonstrated that peach flower bud dif-ferentiation occurred continuously in both cultivars during chilling accumulation,which was correlated with the transcript abundance of key genes involved in phytohormone metabolism and flower bud development under adverse conditions.The more increased strength in high chilling-requirement cultivar along with the chilling accumulation at the genome-wide level.The function of the dormancy-associated MADS-box gene PpDAM6 was identified,which is involved in leaf bud break in peach and flower development in transgenic Nicotiana tabacum(NC89).In addition,PpDAM6 was positively regulated by PpCBF,and the genes of putative dormancy-related and associated with metabolic pathways were proposed.Taken together,these results constituted a theoretical basis for elucidating the regulation of peach bud dormancy transition.

    ChMYB1-ChbHLH42-ChTTG1 module regulates abscisic acid-induced anthocyanin biosynthesis in Cerasus humilis

    Xiaolong JiZhe LiMingyu ZhangShaoyu Lang...
    41-55页
    查看更多>>摘要:Cerasus humilis is a kind of economic fruit tree peculiar to China,which is widely used in the food,landscape,and pharmaceutical industries.Anthocyanins are a phenolic metabolite that plays an essential role in fruit coloration.However,the regulatory network of C.humilis in anthocyanin biosynthesis is still unclear.In this study,the R2R3-MYB transcription factor ChMYB1 was isolated from the full genome of the species.Yeast one-hybrid,dual-luciferase assays,and GUS staining showed that ChMYB1 significantly increased anthocyanin contents in C.humilis fruit by promoting the expression of ChCHS and ChUFGT by binding MBS(MYB-binding elements).ChMYB1 interacted with ChbHLH42 and ChTTG1 to form the MBW complex and further enhanced the expression of ChUFGT.In addition,abscisic acid(ABA)treatment promoted the expression of ChMYB1 and anthocyanin accumulation in C.humilis fruit.Interestingly,ABA treatment enhanced the interaction between ChMYB1 and ChbHLH42.Furthermore,ChABI5 inhibited the interaction between ChMYB1 and ChbHLH42.Our data elucidated the primary molecular mechanism of anthocyanin biosynthesis in C.humilis fruit,deepening the understanding of the regulatory network affecting anthocyanin metabolism in edible fruit crops.

    Differences in leaf cuticular wax induced by whole-genome duplication in autotetraploid sour jujube

    Meng LiChenxing ZhangLu HouXinru Liu...
    56-66页
    查看更多>>摘要:Drought-resistant plants exhibit strong water retention capability.In this regard,the autotetraploid sour jujube leaves exhibit better water retention than diploid leaves.Morphological comparisons and physiological comparisons of diploid and autotetraploid leaves showed that the autotetraploid leaves had thicker leaf cuticles and more leaf wax accumulation than the diploid leaves,which could reduce cuticle permeability and improve the drought tolerance of leaves.In this study,the cuticular wax crystalloids on the adaxial and abaxial sides of young and mature jujube leaves were observed in the two ploidy types,and unique cuticular wax crystalloids covering a large area of the cuticle on autotetraploid sour jujube leaves may provide an advantage in reducing leaf non-stomata transpiration and improving plant drought tolerance.Based on the transcriptome,115 differentially expressed genes between diploids and autotetraploids were further analyzed and found to be involved in the accumulation of cuticular wax components,including terpenoids,fatty acids,and lipids,as well as ABC transporter and wax biosynthetic process.Finally,14 genes differentially expressed between glossy autotetraploid leaves and nonglossy diploid leaves,such as LOC107414787,LOC107411574 and LOC107413721,were screened as candidate genes by qRT-PCR analysis.This findings provided insights into how poly-ploidization improved drought tolerance.

    GST family genes in jujube actively respond to phytoplasma infection

    Qipeng WangLiman ZhangChaoling XueYao Zhang...
    67-80页
    查看更多>>摘要:Jujube witches'broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses.This study aims to identify and reveal the changes in the jujube GST gene family in response to phytoplasma infection.Here,70 ZjGSTs were identified in the jujube genome and divided into 8 classes.Among them,the Tau-class,including 44 genes,was the largest.Phylogenetic analysis indicated that Tau-class genes were highly conserved among species,such as Arabidopsis,cotton,chickpea,and rice.Through chromosome location analysis,37.1%of genes were clustered,and 8 of 9 gene clusters were composed of Tau class members.Through RT-PCR,qRT-PCR and enzyme activity detection,the results showed that the expression of half(20/40)of the tested ZjGSTs was inhibited by phytoplasma infection in field and tissue culture conditions,and GST activity was also significantly reduced.In the resistant and susceptible varieties under phytoplasma infection,ZjGSTU49-ZjGSTU54 in the cluster Ⅳshowed opposite expression patterns,which may be due to functional divergence during evolution.Some upregulated genes(ZjGSTU45,ZjGSTU49,ZjGSTU59,and ZjGSTU70)might be involved in the process of jujube against JWB.The yeast two-hybrid results showed that all 6 Tau-class proteins tested could form homodimers or heterodimers.Overall,the comprehensive analysis of the jujube GST gene family revealed that ZjGSTs responded actively to phytoplasma infection.Furthermore,some screened genes(ZjGSTU24,ZjGSTU49-52,ZjGSTU70,and ZjDHAR10)will contribute to further functional studies of jujube-phytoplasma interactions.

    Identification,characterization,and verification of miR399 target gene in grape

    Maosong PeiHainan LiuTonglu WeiHuiying Jin...
    81-92页
    查看更多>>摘要:The microRNA miR399 plays an important role in phosphorus signal transduction pathways in plants.Previously,miR399 was shown to be closely associated with berry ripening in grape(Vitis vinifera).The objective of the present study was to elucidate the evolutionary charac-teristics of the miR399 gene family in grape and to verify the cleavage effect on the target genes.Grape miR399s were identified by miRNA sequencing and retrieval from the miRBase database.The mature sequences and precursor sequences were subjected to phylogenetic analysis to reconstruct evolutionary trees,as well as secondary structure analysis of the precursor sequence,and prediction of target genes.The cis-acting elements in the miR399 promoter were predicted and the cleavage effect of grape miR399b on its target genes was verified.The grape miR399 family comprised nine precursor sequences and nine mature sequences.The precursor sequences formed a typical and stable stem-loop structure.The minimum folding free energy ranged from-55.70 kcal·mol-1 to-37.40 kcal·mol-1.Multiple sequence alignment revealed that the miR399 family was highly conserved.The grape miR399 family was phylogenetically closely related to peach,apple,and citrus miR399s.Grape miR399s were predicted to target inorganic phosphate transporter 1-3,phospholipase D delta-like,and beta-glucuronosyltransferase.The cleavage effect of grape miR399b on the target genes was verified by means of a dual-luciferase assay and 5'RLM-RACE.Histochemical GUS staining showed that the promoter activity of miR399b was promoted by GA3 treatment.

    CsABF3-activated CsSUT1 pathway is implicated in pre-harvest water deficit inducing sucrose accumulation in citrus fruit

    Xiaochuan MaYuanyuan ChangFeifei LiJunfeng Yang...
    93-104页
    查看更多>>摘要:Pre-harvest water deficit(PHWD)plays an important role in sugar accumulation of citrus fruit.However,the mechanism is not known well.Here,it was confirmed that PHWD promoted sucrose accumulation of citrus fruit,but had limited effect on fructose,glucose and total acid.A sucrose transporter,CsSUT1,which localizes to the plasma membrane,was demonstrated to function in sucrose transport induced by PHWD.Compared to wild-type,CsSUT1 overexpression in citrus calli stimulated sucrose,fructose and glucose accumulation,while its silencing in juice sacs reduced sucrose accumulation.Increased sugar accumulation in transgenic lines enhanced plant drought tolerance,and resulted in decreased electrolyte leakage,malondialdehyde and hydrogen peroxide contents,as well as increased superoxide dismutase activity and proline contents.An abscisic acid(ABA)-responsive transcription factor,CsABF3,was found with a same expression pattern with CsSUT1 under PHWD.Yeast one-hybrid,electrophoretic mobility shift assay and dual-luciferase assays all revealed that CsABF3 directly bound with the CsSUT1 promoter by ABA responsive elements.When CsABF3 was overexpressed in citrus calli,the sucrose,fructose and glucose concentration increased correspondingly.Further,transgenic studies demonstrated that CsABF3 could affect sucrose accumulation by regulating CsSUT1.Overall,this study revealed a regulation of CsABF3 promoting CsSUT1 expression and sucrose accumulation in response to PHWD.Our results provide a detail insight into the quality formation of citrus fruit.

    Global analysis of basic leucine zipper transcription factors in trifoliate orange and the function identification of PtbZIP49 in salt tolerance

    Yuanyuan XuQiuling HuiMeng LiHongxian Peng...
    105-120页
    查看更多>>摘要:As one of the most widely distributed and highly conserved transcription factors in eukaryotes,basic leucine zipper proteins(bZIPs)are involved in a variety of biological processes in plants,but they are largely unknown in citrus.In this study,56 bZIP family members were identified genome-wide from an important citrus rootstock,namely trifoliate orange(Poncirus trifoliata L.Raf.),and these putative bZIPs were named PtbZIP1-PtbZIP56.All PtbZIPs were classified into 13 subgroups by phylogenetic comparison with Arabidopsis thaliana bZIPs(AtbZIPs),and they were randomly distributed on nine known(50 genes)chromosomes and one unknown(6 genes)chromosome.Sequence analysis revealed the detailed characteristics of PtPZIPs,including their amino acid length,isoelectric point(pI),molecular weight(MW),predicted subcellular localization,gene structure,and conserved motifs.Prediction of promoter elements suggested the presence of drought,low-temperature,wound,and defense and stress responsive elements,as well as multiple hormone-responsive cis-acting elements.Spatiotemporal expres-sion analysis showed the transcriptional patterns of PtbZIPs in different tissues and under dehydration,high salt,ABA,and IAA treatments.In addition,21 PtbZIPs were predicted to have direct or indirect protein-protein interactions.Among these,PtbZIP49 was experimentally proven to interact with PtbZIP1 or PtbZIP11 by using a yeast two-hybrid assay and bimolecular fluorescence complementation(BiFC).Subcellular localization analysis further revealed that PtbZIP1,PtbZIP11,and PtbZIP49 were localized in the nucleus.Moreover,PtbZIP49 was functionally identified as having an important role in salt stress via ectopic expression in A.thaliana and silenced in trifoliate orange using virus-induced gene silencing(VIGS).This study provided comprehensive information on PtbZIP transcription factors in citrus and highlights their potential functions in abiotic stress.

    FaSnRK1α mediates salicylic acid pathways to enhance strawberry resistance to Botrytis cinerea

    Jingjing LuoWenying YuYuansong XiaoYafei Zhang...
    121-134页
    查看更多>>摘要:Strawberry is a major fruit crop worldwide because its nutritional and health benefits to human health,but its productivity is limited by Botrytis cinerea.Sucrose nonfermentation 1-related protein kinase 1(SnRK1)has a defense function against pathogens,but the function of SnRK1 in the defense response to B.cinerea in plants is still unclear.In this study,FaSnRK1α-OE and RNAi fruits were constructed and then inoculated with B.cinerea.The result reveals a positive role of FaSnRK1α in the regulation of resistance to gray mold.FaSnRK1α affects SA content by regulating FaPAL1 and FaPAL2 expressions.The genes related to the SA signaling pathway(FaTGA1 and FaTGA2.1)were significantly increased/decreased in FaSnRK1α-OE or FaSnRK1α-RNAi fruit,respectively.FaSnRK1α interacted with the FaWRKY33.2 protein and negatively regulated FaWRKY33.2 expression,and FaWRKY33.2 acts as a repressor of disease resistance to B.cinerea.Finally,FaSnRK1α regulates the expression of six PR genes and the activities of antioxidant enzymes to boost defense response after B.cinerea inoculation.Our findings showed that FaSnRK1α increases the resistance of strawberry fruit to B.cinerea via SA signaling pathway and interaction with the FaWRKY33.2 tran-scription factor.