首页期刊导航|中国科学:地球科学(英文版)
期刊信息/Journal information
中国科学:地球科学(英文版)
中国科学:地球科学(英文版)

周光召

月刊

1674-7313

sales@scichina.org

010-64019820

100717

北京东黄城根北街16号

中国科学:地球科学(英文版)/Journal Science China(Earth Sciences)CSCDEISCI
查看更多>>《中国科学》是中国科学院主办、中国科学杂志社出版的自然科学专业性学术刊物。《中国科学》任务是反映中国自然科学各学科中的最新科研成果,以促进国内外的学术交流。《中国科学》以论文形式报道中国基础研究和应用研究方面具有创造性的、高水平的和有重要意义的科研成果。在国际学术界,《中国科学》作为代表中国最高水平的学术刊物也受到高度重视。国际上最具有权威的检索刊物SCI,多年来一直收录《中国科学》的论文。1999年《中国科学》夺得国家期刊奖的第一名。
正式出版
收录年代

    Impact crater recognition methods:A review

    Dong CHENFan HULiqiang ZHANGYunzhao WU...
    1719-1742页
    查看更多>>摘要:Impact craters are formed due to the high-speed collisions between small to medium-sized celestial bodies.Impact is the most significant driving force in the evolution of celestial bodies,and the impact craters provide crucial insights into the formation,evolution,and impact history of celestial bodies.In this paper,we present a detailed review of the characteristics of impact craters,impact crater remote sensing data,recognition algorithms,and applications related to impact craters.We first provide a detailed description of the geometric texture,illumination,and morphology characteristics observed in remote sensing data of craters.Then we summarize the remote sensing data and cataloging databases for the four terrestrial planets(i.e.,the Moon,Mars,Mercury,and Venus),as well as the impact craters on Ceres.Subsequently,we study the advancement achieved in the traditional methods,machine learning methods,and deep learning methods applied to the classification,segmentation,and recognition of impact craters.Furthermore,based on the analysis results,we discuss the existing challenges in impact crater recognition and suggest some solutions.Finally,we explore the implementation of impact crater detection algorithms and provide a forward-looking perspective.

    Unraveling the Cenozoic carbon cycle by reconstructing carbonate compensation depth(CCD)

    Kaixun XIAOXiumian HUJingxin JIANGJiahao WANG...
    1743-1758页
    查看更多>>摘要:The Carbonate Compensation Depth(CCD)refers to the depth within the ocean where the production and dissolution rates of carbonates reach equilibrium,widely likened to the oceanic calcareous'snowline'.The reconstruction of deep-time CCD has significant implications for understanding ocean circulation,seawater chemical conditions,sediment distribution,and the surface carbon cycle.This paper critically reviews the methods for CCD reconstruction,summarizes the driving mechanisms of the Cenozoic CCD evolution and its association with the carbon cycle,and offers insights into future directions for CCD research.CCD reconstruction has evolved over the past half century from early qualitative to quantitative methods.These methodological improvements have markedly improved the accuracy and resolution of CCD.Existing studies have indicated a general trend of the CCD deepening across major ocean basins since the Cenozoic,interspersed with a minor shallowing phase during the mid-Miocene.The variations in the CCD are primarily influenced by factors such as ocean productivity,weathering,and shelf-basin partitioning.During climate events such as the Paleocene-Eocene Thermal Maximum,the CCD exhibits pulse-like fluctuations.Future research should focus on precision and quantification while integrating model simulations to further explore the correlations and response mechanisms between the CCD and the paleoclimate as well as the carbon cycle.

    A novel model of the carbon cycle in the Cambrian ocean

    Huajian WANGShuichang ZHANGXiaomei WANGJin SU...
    1759-1778页
    查看更多>>摘要:The classic model of the carbon cycle suggests that the extensive burial of 12C-enriched organic carbon leads to a positive carbon isotope(δ13C)excursion(CIE),while massive oxidation of organic carbon results in a negative CIE.However,global events such as the BAsal Cambrian Carbon isotope Excursion(BACE)and the Steptoean Positive Carbon Isotope Excursion(SPICE)are global negative and positive δ13C excursions,respectively,and they also exhibit significant organic carbon burial anomalies,displaying decoupling between carbon isotope anomalies and organic carbon burial.Based on the analyses of the Cambrian carbon cycle and paleoceanographic evolution records from well Tadong2 in the Tarim Basin,we propose a novel model of the carbon cycle in the Cambrian ocean that incorporates oceanic dissolved organic carbon(DOC).Our findings are as follows.(1)The Cambrian ocean maintained substantial DOC reservoirs,which were regulated by ocean currents and paleo-redox conditions and exerted significant influence on the oceanic carbon cycle.(2)The oxidation of the oceanic DOC reservoirs during the early Cambrian led to the BACE and the Asian Phenomenon of the Cambrian petroleum systems,while the expansion of the oceanic DOC reservoirs during the SPICE resulted in a global positive δ13C excursion and the absence of significant organic carbon burial.(3)The deep-basin sedimentary environment in the eastern depression of the Tarim Basin may have fostered the development of organic-rich black shales during the Furongian Series,corresponding to organic carbon burial during the SPICE and representing potential prospects for ultra-deep oil and gas exploration.Future research should focus on the formation mechanism,reserve scale,and influencing factors of the oceanic DOC reservoirs,as well as their resource and environmental effects.It is expected that new breakthroughs will be made in the fields of Earth system science and oil and gas exploration.

    Inertinite in coal and its geoenvironmental significance:Insights from AI and big data analysis

    Longyi SHAOJiamin ZHOUTimothy P.JONESFanghui HUA...
    1779-1801页
    查看更多>>摘要:Inertinite,as an important and abundant maceral group in coal,is critical for the study of palaeowildfires and their roles in the Earth's ecosystems.Recently,there has been a significant amount of research on the relationship between palaeo-wildfire,palaeoclimate change and palaeovegetation evolution based on inertinite data.The reflectance of fusinite and semi-fusinite has been used to estimate the combustion temperature and type of palaeowildfires,and then to evaluate the combustion characteristics of different types of palaeowildfires.The relative abundance of inertinite can be used to estimate the atmospheric oxygen contents.The rapid development of artificial intelligence(AI)and online tools to search scientific databases has presented an opportunity for us to find,collect,arrange,and analyse data from the earliest to latest publications on inertinite.The data extraction tool Deep Shovel is used to collect and analyse global inertinite data from the Silurian to the Neogene.The software programs such as Gplates,ArcGIS pro and Tableau are then applied to model the relative abundance of inertinite over geological time,which can be correlated with other parameters such as atmospheric oxygen contents,plant evolution and palaeoclimate changes.The distribution of inertinite in coals varied over different geological periods,being typified by the"high inertinite content-high atmospheric oxygen level"period in the Permian and the"low inertinite content-low atmospheric oxygen level"period in the Cenozoic.This study has proposed a possible model of the positive and negative feedbacks between inertinite characteristics and palaeoenvironmental factors,and has revealed the exceptional role of inertinite in palaeoenvironmental studies.Future research on inertinite will be focused on the integrated study of organic petrology and organic geochemistry of inertinite,the big data-driven research on the temporal and spatial distribution of the global inertinite,the exploration of the functions of palaeowildfires in the Earth systems in different climatic backgrounds,and the study of modem wildfires to better predict the future frequency and intensity of wildfires due to climate changes.

    An eikonal equation-based earthquake location method by inversion of multiple phase arrivals

    Gaoyue LAODinghui YANGShaolin LIUGuiju DONG...
    1802-1817页
    查看更多>>摘要:The precise determination of earthquake location is the fundamental basis in seismological community,and is crucial for analyzing seismic activity and performing seismic tomography.First arrivals are generally used to practically determine earthquake locations.However,first-arrival traveltimes are not sensitive to focal depths.Moreover,they cannot accurately constrain focal depths.To improve the accuracy,researchers have analyzed the depth phases of earthquake locations.The traveltimes of depth phases are sensitive to focal depths,and the joint inversion of depth phases and direct phases can be implemented to potentially obtain accurate earthquake locations.Generally,researchers can determine earthquake locations in layered models.Because layered models can only represent the first-order feature of subsurface structures,the advantages of joint inversion are not fully explored if layered models are used.To resolve the issue of current joint inversions,we use the traveltimes of three seismic phases to determine earthquake locations in heterogeneous models.The three seismic phases used in this study are the first P-,sPg-and PmP-waves.We calculate the traveltimes of the three seismic phases by solving an eikonal equation with an upwind difference scheme and use the traveltimes to determine earthquake locations.To verify the accuracy of the earthquake location method by the inversion of three seismic phases,we take the 2021 Ms6.4 Yangbi,Yunnan earthquake as an example and locate this earthquake using synthetic and real seismic data.Numerical tests demonstrate that the eikonal equation-based earthquake location method,which involves the inversion of multiple phase arrivals,can effectively improve earthquake location accuracy.

    Kilometer-resolution three-dimensional crustal deformation of Tibetan Plateau from InSAR and GNSS

    Chuanjin LIULingyun JILiangyu ZHUCaijun XU...
    1818-1835页
    查看更多>>摘要:Located at the forefront of the collision between the Indian and Eurasian Plates,the Tibetan Plateau experiences intense crustal movement.Traditional ground-based geodetic monitoring,such as GNSS and leveling,is challenging,due to factors such as high altitude and harsh climate,making it difficult to accurately determine a high-resolution crustal deformation field of the plateau.Unaffected by ground observation conditions,InSAR technique has key advantages for obtaining extensive and high-resolution crustal deformation fields.This makes it indispensable for crustal deformation monitoring on the Tibetan Plateau.This study used Sentinel-1 data from 2014 to 2020 to compute the ascending and descending InSAR deformation fields for the Tibetan Plateau.This was conducted with a measurement accuracy of approximately 3 mm/yr.Building upon this,we integrated InSAR and GNSS data to yield kilometer-resolution three-dimensional(3D)crustal deformation and strain rate fields for the Tibetan Plateau.A spherical wavelet analysis was used to decompose the 3D deformation field and separate the non-tectonic crustal deformation to increase the strength of the tectonic deformation signal.Short-wavelength(<110 km)de-formations match the distribution of fault movement,post-seismic deformations,and other non-tectonic factors.Long wave-length(>110 km)deformation mainly results from subsidence in the central plateau and uplifts along the Himalayan Arc.This indicates that the Tibetan Plateau may have stopped the entire uplift and entered a local collapse stage.Furthermore,the deformation fields at different spatial scales reveal that the plateau exhibits discontinuous deformation in short wavelengths and continuous deformation in long wavelengths.The findings of this study contribute to resolving the controversy between the Block and Continuum Deformation models of the Tibetan Plateau.

    Characteristics and geological significance of the stress state of the lithosphere in the Qinghai-Tibetan Plateau and its neighboring areas

    Qianwen ZHANGYa XUWei CHUShupeng LU...
    1836-1855页
    查看更多>>摘要:The present-day lithospheric stress state of the Qinghai-Tibetan Plateau and neighboring areas is controlled by both the lithosphere itself and the underlying mantle.In other words,the stress is affected by the gravitational potential energy(GPE)difference caused by the change in the density distribution within the lithosphere and the drag force on the base of the lithosphere caused by mantle convection.The study of the lithospheric stress state plays an important role in further understanding the dynamic background and mechanism for the evolution of the Qinghai-Tibetan Plateau.In this study,the Crustl.0 crustal density model combined with the S40RTS mantle shear wave velocity variation model was used to calculate the GPE.The EGM2008 gravity field model was used to calculate the drag force from mantle convection at the base of the lithosphere.The lithospheric and joint stress fields of the two sources were obtained by solving the force balance under the thin sheet approximation.This way,we could comprehensively analyze the characteristics of the stress state within the Plateau.Six regions were classified according to the GPE stress field,mantle drag force stress field,the relative magnitude of the two stress fields,and correlation between the two stress fields and surface deformation.The lithospheric stress fields of the Tarim Basin and other stable blocks are mainly controlled by the GPE difference.The lithospheric stress field in the collision zone between the Indian Plate and the Qinghai-Tibetan Plateau is predominantly controlled by the deep mantle drag force.The lithospheric stress field in the interior of the Plateau is controlled by both GPE and mantle drag.The correlation between the lithospheric stress field and surface deformation at the southeast margin of the Qinghai-Tibetan Plateau is poor.It is hypothesized that the presence of lower crustal flow with lower effective viscosity leads to crust-mantle decoupling,and the mantle drag force has a weaker influence on the shallow crust,resulting in the inconsistency between the average lithospheric stress field and surface deformation.

    Geochronological and geochemical constraints on the petrogenesis and geodynamic process of Hemler,Vlinder,and Il'ichev seamount lavas in NW Pacific

    Xun WEIYan ZHANGXuefa SHIHui ZHANG...
    1856-1871页
    查看更多>>摘要:Oceanic intraplate volcanoes with linear age progressions are usually accepted to be derived from melting of an upwelling mantle plume.Several seamount groups in NW Pacific,however,show complex age-distance relationships that are difficult to explain using the classic"mantle plume hypothesis",and thus their origins are controversial.In this study,we present 40Ar-39Ar age,geochemical,and Sr-Nd-Pb-Hf isotopic data of lavas from Hemler,Vlinder,and Il'ichev seamounts in NW Pacific,to elucidate their petrogenesis and geodynamic process.The lavas from Hemler,Vlinder,and Il'ichev seamounts are classified as alkali basalt,basanite/nephelinite,and trachyte.Lavas with MgO>8 wt.%exhibit high contents of CaO,FeOT,and TiO2,similar to the composition of melts formed from reaction between carbonated eclogite-derived melts and fertile peridotite.These lavas have elevated Zr/Hf ratios(40.6-45.2)and negative Zr and Hf anomalies,indicating the presence of a carbonate component in the mantle source.They are enriched in incompatible trace elements and have enriched mantle 1(EM1)-like Sr-Nd-Pb-Hf isotopic compositions.The isotopic compositions of Vlinder,Il'ichev basanite,and Hemler lavas in this study are similar to the Rarotonga hotspot.Although occurring at the same seamount,the Il'ichev alkali basalts display more depleted Sr-Nd-Hf isotopic compositions compared to Il'ichev basanite.According to plate tectonic reconstruction results,the ages of Hemler(100.1 Ma),Vlinder pre-(100.2 Ma)and post-shield(87.5 Ma),and Il'ichev(56.4 Ma)lavas clearly deviate from the Macdonald,Arago,Rarotonga,and Samoa hotspot tracks,indicating that they cannot directly originate from mantle plumes.We propose that in the mid-Cretaceous,when the Pacific plate passed over Rarotonga hotspot,melting of Rarotonga plume formed the Vlinder(main-shield stage),Pako,and Ioah seamounts.The Rarotonga(and possibly Samoa)plume materials would have been dispersed into the surrounding asthenosphere by mantle convection.These diffuse plume materials would undergo de-compression melting beneath lithosphere fractures that are widely distributed in the Magellan area,generating non-hotspot related Hemler and pre-and post-shield Vlinder lavas.The Il'ichev alkali basalts and basanite probably result from lithospheric fracture-induced melting of heterogeneous enriched components randomly distributed in the asthenosphere.

    Adaptive strategies of high and low nucleic acid prokaryotes in response to declining resource availability and selective grazing by protozoa

    Chen HULiuqian YUXiaowei CHENJihua LIU...
    1872-1884页
    查看更多>>摘要:Prokaryotes play a fundamental role in global ocean biogeochemical cycles.However,how the abundance and metabolic activity of ecologically distinct subgroups(i.e.,high nucleic acid(HNA)and low nucleic acid(LNA)cells),and their regulating factors,change in response to changing marine environmental conditions remains poorly understood.Here,we delved into the time-evolving dynamic responses of the HNA and LNA prokaryotic subgroups to declining resource availability and selective grazing by protozoa by conducting a 73-day incubation experiment in a large-volume(117,000 L)macrocosm that facilitates community-level exploration.We found that the metabolic activity of the HNA subgroup was higher than that of the LNA subgroup when the macrocosm was resource replete but that the HNA subgroup declined more rapidly than the LNA subgroup as the resources became increasingly scarce,leading to a steadily increasing contribution of LNA cells to prokaryotic activity.Meanwhile,as resources in the macrocosm became limited,protozoan grazing preference shifted from the HNA to the LNA subgroup and the contributions of the LNA subgroup to the carbon flow within the macrocosm increased.The findings highlight the resilience of LNA cells in resource-limited environments,illuminate the critical role of selective grazing by protozoa in balancing distinct prokaryotic subgroups under changing resource conditions,and demonstrate the complex and adaptive interactions between protozoa and prokaryotes across diverse environmental contexts.

    Projections of summer light rain frequency in typical terrain over eastern China under wind speed constraint

    Xuechen DONGDaoyi GONGCuicui SHI
    1885-1894页
    查看更多>>摘要:The variation in near-surface wind speed is a key dynamic parameter in the orographic effect of precipitation over eastern China.In this study,we used the latest high-resolution outputs from six GCMs in CMIP6-HighResMIP to evaluate the performance of high-resolution models in simulating the orographic precipitation characteristics of typical mountainous areas in summer over eastern China.The orographic precipitation under warming scenarios was projected and constrained according to observational data.The results indicated that during the contemporary climate reference period(1979-2009),although the relationship between model-simulated near-surface wind speed and orographic light rain frequency was consistently stable,the sensitivity of the orographic light rain frequency to surface wind variability was generally underestimated,with a deviation approximately 24.1%lower than the observational values.The estimated orographic light rain frequency corrected based on the observed near-surface wind speed under a 1.5℃ warming scenario,was 36.1%lower than that of the contemporary period;this reduction was 8.6 times that without the wind speed constraint(4.2%).The MRI-AGCM3-2-S model,with a longer dataset,demonstrated relatively stable reductions in orographic light rain frequency under different warming scenarios(1.5℃,2℃,3℃,and 4℃)after the application of wind speed constraints.In all cases,the reductions exceeded those for the predictions made without the wind speed constraint.