首页期刊导航|农业科学学报(英文)
期刊信息/Journal information
农业科学学报(英文)
中国农业科学院农业信息研究所
农业科学学报(英文)

中国农业科学院农业信息研究所

翟虎渠

月刊

2095-3119

zgnykx@mail.caas.net.cn

010-82106283 82106280

100081

北京中关村南大街12号

农业科学学报(英文)/Journal Journal of Integrative AgricultureCSCDCSTPCD北大核心SCI
查看更多>>本刊创刊于2002年,由中国农业科学院、中国农学会主办,中国农业科学院农业信息研究所承办。刊登农牧业基础科学和应用科学的研究论文,覆盖作物科学、动物科学、农业环境、农业经济与管理等领域。
正式出版
收录年代

    Integrating artificial intelligence and high-throughput phenotyping for crop improvement

    Mansoor SheikhFarooq IqraHamadani AmbreenKumar A Pravin...
    1787-1802页
    查看更多>>摘要:Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.

    What factors control plant height?

    Li MiaoXiangyu WangChao YuChengyang Ye...
    1803-1824页
    查看更多>>摘要:Plant height(PH)is one of the most important components of the plant ideotype,and it affects plant biomass,yield,lodging resistance,and the ability to use mechanized harvesting.Since many complex pathways controlling plant growth and development remain poorly understood,we are still unable to obtain the most ideal plants solely through breeding efforts.PH can be influenced by genotype,plant hormonal regulation,environmental conditions,and interactions with other plants.Here,we comprehensively review the factors influencing PH,including the regulation of PH-related developmental processes,the genetics and QTLs contributing to PH,and the hormone-regulated molecular mechanisms for PH.Additionally,the symbiotic influence of grafting on PH is discussed,focusing on the molecular regulation of gene expression and genetics.Finally,we propose strategies for applying recent findings to breeding for better PH,highlight some knowledge gaps,and suggest potential directions for future studies.

    Biology of Hippo signaling pathway:Skeletal muscle development and beyond

    Shuqi QinChaocheng LiHaiyan LuYulong Feng...
    1825-1838页
    查看更多>>摘要:Global demand for farm animals and their meat products i.e.,pork,chicken and other livestock meat,is steadily incresing.With the ongoing life science research and the rapid development of biotechnology,it is a great opportunity to develop advanced molecular breeding markers to efficiently improve animal meat production traits.Hippo is an important study subject because of its crucial role in the regulation of organ size.In recent years,with the increase of research on Hippo signaling pathway,the integrative application of multi-omics technologies such as genomics,transcriptomics,proteomics,and metabolomics can help promote the in-depth involvement of Hippo signaling pathway in skeletal muscle development research.The Hippo signaling pathway plays a key role in many biological events,including cell division,cell migration,cell proliferation,cell differentiation,cell apoptosis,as well as cell adhesion,cell polarity,homeostasis,maintenance of the face of mechanical overload,etc.Its influence on the development of skeletal muscle has important research value for enhancing the efficiency of animal husbandry production.In this study,we traced the origin of the Hippo pathway,comprehensively sorted out all the functional factors found in the pathway,deeply analyzed the molecular mechanism of its function,and classified it from a novel perspective based on its main functional domain and mode of action.Our aim is to systematically explore its regulatory role throughout skeletal muscle development.We specifically focus on the Hippo signaling pathway in embryonic stem cell development,muscle satellite cell fate determination,myogenesis,skeletal muscle meat production and organ size regulation,muscle hypertrophy and atrophy,muscle fiber formation and its transformation between different types,and cardiomyocytes.The roles in proliferation and regeneration are methodically summarized and analyzed comprehensively.The summary and prospect of the Hippo signaling pathway within this article will provide ideas for further improving meat production and muscle deposition and developing new molecular breeding technologies for livestock and poultry,which will be helpful for the development of animal molecular breeding.

    Establishment of a transformation system in close relatives of wheat under the assistance of TaWOX5

    Yanan ChangJunxian LiuChang LiuHuiyun Liu...
    1839-1849页
    查看更多>>摘要:Species closely related to wheat are important genetic resources for agricultural production,functional genomics studies and wheat improvement.In this study,a wheat gene related to regeneration,TaWOX5,was applied to establish the Agrobacterium-mediated transformation systems of Triticum monococcum,hexaploid triticale,and rye(Secale cereale L.)using their immature embryos.Transgenic plants were efficiently generated.During the transformation process,the Agrobacterium infection efficiency was assessed by histochemical staining for β-glucuronidase(GUS).Finally,the transgenic nature of regenerated plants was verified by polymerase chain reaction(PCR)-based genotyping for the presence of the GUS and bialaphos resistance(bar)genes,histochemical staining for GUS protein,and the QuickStix strip assay for bar protein.The transformation efficiency of T.monococcum genotype PI428182 was 94.4%;the efficiencies of four hexaploid triticale genotypes Lin456,ZS3297,ZS1257,and ZS3224 were 52.1,41.2,19.4,and 16.0%,respectively;and the transformation efficiency of rye cultivar Lanzhou Heimai was 7.8%.Fluorescence in situ hybridization(FISH)and genomic in situ hybridization(GISH)analyses indicated that the GUS transgenes were integrated into the distal or near centromere(proximal)regions of the chromosomes in transgenic T.monococcum and hexapioid triticale plants.In the transgenic hexapioid triticale plants,the foreign DNA fragment was randomly integrated into the AABB and RR genomes.Furthermore,the transgene was almost stably inherited in the next generation by Mendel's law.The findings in this study will promote the genetic improvement of the three plant species for grain or forage production and the improvement of cereal species including wheat for functional genomics studies.

    Strigolactones modulate cotton fiber elongation and secondary cell wall thickening

    Yunze WenPeng HeXiaohan BaiHuizhi Zhang...
    1850-1863页
    查看更多>>摘要:Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.

    Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus

    Jianjun WangYanan ShaoXin YangChi Zhang...
    1864-1878页
    查看更多>>摘要:Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid biosynthesis as well as responses to biotic and abiotic stresses.However,the function of SAD orthologs from L.usitatissimum has not been assessed.Here,we found that two LuSAD genes,LuSAD1 and LuSAD2,are present in the genome of L.usitatissimum cultivar'Longya 10'.Heterogeneous expression of either LuSAD1 or LuSAD2 in Arabidopsis thaliana resulted in higher contents of total fatty acids and oleic acid in the seeds.Interestingly,ectopic expression of LuSAD2 in A.thaliana caused altered plant architecture.Similarly,the overexpression of either LuSAD1 or LuSAD2 in Brassica napus also resulted in increased contents of total fatty acids and oleic acid in the seeds.Furthermore,we demonstrated that either LuSAD1 or LuSAD2 enhances seedling resistance to cold and drought stresses by improving antioxidant enzyme activity and nonenzymatic antioxidant levels,as well as reducing membrane damage.These findings not only broaden our knowledge of the LuSAD functions in plants,but also offer promising targets for improving the quantity and quality of oil,and the abiotic stress tolerance of oil-producing crops,through molecular manipulation.

    The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice

    Hanzhu GuXian WangMinhao ZhangWenjiang Jing...
    1879-1896页
    查看更多>>摘要:Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood.In this study,four rice varieties were produced in the field.Each variety was treated with six different cultivation techniques,including zero nitrogen application(0 N),local farmers'practice(LFP),nitrogen reduction(NR),and three progressive ICP techniques comprised of enhanced fertilizer N practice and increased plant density(ICP1),a treatment similar to ICP1 but with alternate wetting and moderate drying instead of continuous flooding(ICP2),and the same practices as ICP2 with the application of organic fertilizer(ICP3).The ICPs had greater grain production and nitrogen use efficiency than the other three methods.Root length,dry weight,root diameter,activity of root oxidation,root bleeding rate,zeatin and zeatin riboside compositions,and total organic acids in root exudates were elevated with the introduction of the successive cultivation practices.ICPs enhanced nitrate nitrogen,the activities of urease and invertase,and the diversity of microbes(bacteria)in rhizosphere and non-rhizosphere soil,while reducing the ammonium nitrogen content.The nutrient contents(ammonium nitrogen,total nitrogen,total potassium,total phosphorus,nitrate,and available phosphorus)and urease activity in rhizosphere soil were reduced in all treatments in comparison with the non-rhizosphere soil,but the invertase activity and bacterial diversity were greater.The main root morphology and physiology,and the ammonium nitrogen contents in rhizosphere soil at the primary stages were closely correlated with grain yield and internal nitrogen use efficiency.These findings suggest that the coordinated enhancement of the root system and the environment of the rhizosphere under integrative cultivation approaches may lead to higher rice production.

    Inhibition of protein degradation increases the Bt protein concentration in Bt cotton

    Yuting LiuHanjia LiYuan ChenTambel Leila.I.M....
    1897-1909页
    查看更多>>摘要:Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant's organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1)and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.

    Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean

    Ping ChenQing DuBenchuan ZhengHuan Yang...
    1910-1928页
    查看更多>>摘要:Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(145),60(160),75 cm(175),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The 160 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.

    Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha

    Yingzhen WangYing WuXinlei WangWangmei Ren...
    1929-1939页
    查看更多>>摘要:Quality and yield are the primary concerns in kiwifruit breeding,but research on the genetic mechanisms of fruit size,shape,and ascorbic acid(ASA)content is currently very limited,which restricts the development of kiwifruit molecular breeding.In this study,we obtained a total of 8.88 million highly reliable single nucleotide polymorphism(SNP)markers from 140 individuals from the natural hybrid offspring of Actinidia eriantha cv.'White'using whole genome resequencing technology.A genome-wide association study was conducted on eight key agronomic traits,including single fruit weight,fruit shape,ASA content,and the number of inflorescences per branch.A total of 59 genetic loci containing potential functional genes were located,and candidate genes related to single fruit weight,fruit length,ASA content,number of inflorescences per branch and other traits were identified within the candidate interval,such as AeWUSCHEL,AeCDK1(cell cycle dependent kinase),AeAO1(ascorbic oxidase)and AeCO1(CONSTANS-like 4).After constructing an RNAi vector for AeAO1 and injecting it into the fruit of cv.'Midao 31'to interfere with the expression of the AeAO1 gene,the results showed that the activity of ascorbic oxidase in the fruit of'Midao 31'significantly decreased,while the content of ASA significantly increased.This study provides valuable insights into the genetic basis of variation in A.eriantha fruit traits,which may benefit molecular marker-assisted breeding efforts.