首页期刊导航|中国神经再生研究(英文版)
期刊信息/Journal information
中国神经再生研究(英文版)
中国康复医学会
中国神经再生研究(英文版)

中国康复医学会

旬刊

1673-5374

bwb@nrronline.com

024-23381085

110004

沈阳1234邮政信箱

中国神经再生研究(英文版)/Journal Neural Regeneration ResearchCSCDCSTPCD北大核心SCI
查看更多>>SCI收录杂志!!! 本刊为英文版杂志,以国际通用语言研究最前沿、最热点的神经再生问题。创刊起点高,评估论文研究成果的学术标准高,对论文语言表述水平的要求高。 刊物宗旨: 2006年创刊,面向国际、立足国际,以办好一本国际神经再生学科界专家公认的专业性学术期刊为工作目标,主要发表神经再生领域基础及应用基础研究方面的学术文章。 出版重点: 2009年本刊重点出版对神经损伤修复过程中原位神经干细胞以及移植的神经干细胞作用机制的研究,出版神经组织工程、神经退行性疾病组织形态学变化以及中医药对神经细胞、神经组织再生过程中生理、病理结构变化影响的相关研究文章。面向国际,立足国际,关注全球范围内具有创新性的抑制、促进或影响神经细胞、神经组织再生结构变化相关机制的研究,关注由此而发生的一系列功能变化及其相互关系。 感兴趣神经解剖学、病理学、生理学、生物化学、药理学、免疫学、发育学等来自多学科、多层面的题材,感兴趣发表以基础实验性研究为主的揭示大脑皮质、海马、松果体、神经胶质细胞、脊髓神经元、周围神经元以及运动和感觉神经损伤与再生的研究原著,对有助于认识神经再生正常和异常机制的临床类文章,如罕见病例报告、调查分析等也可纳入范围。 欢迎文章从理论假设、研究方法、模型制备、影像学技术等多个视角描述神经再生的相关特点,为读者提供该领域最有价值的学科进展信息及其最新的理论观点,增强对神经再生复杂机制、学说和病理发生过程的理解。一般文章2000-4000单词。 非常注重出版时效。投稿15~30天编辑部采用随机盲法抽取国际评审专家审稿,符合采用标准的文章进入修稿程序,力求出版周期120~180天,以保证高质量优秀稿件抢先出版。 收录情况: 科学引文索引(SCI) 2006年被SCI引文库收录8篇 2008年1月至2008年7月被SCI收录文章188篇 美国生物学文献数据库(BIOSIS) 美国《化学文摘》(CA) 荷兰《医学文摘库/医学文摘》(EM) 波兰《哥伯尼索引》(IC) 中国英文版科技期刊数据库(统计源期刊) 中国科学引文数据库(核心期刊) 2007年被CA收录247篇,被EM收录173篇
正式出版
收录年代

    Translocator protein and neurodegeneration:insights from Alzheimer's disease

    Arpit Kumar PradhanRainer RupprechtGerhard Rammes
    1090-1091页

    Anti-amyloid antibodies in Alzheimer's disease:what did clinical trials teach us?

    Danko JeremicLydia Jiménez-DíazJuan D.Navarro-López
    1092-1093页

    Brain-penetrating neurotrophic factor mimetics:HER-096 as a disease-modifying therapy for Parkinson's disease

    Natalia KulesskayaKira M.HolmströmHenri J.Huttunen
    1094-1095页

    Design and redesign journey of a drug for transthyretin amyloidosis

    Francisca PinheiroSalvador Ventura
    1096-1097页

    Regulation of sleep by astrocytes in the hypothalamic ventrolateral preoptic nucleus

    Jae-Hong KimRuqayya AfridiIl-Sung JangMaan Gee Lee...
    1098-1100页

    Evidence supporting the relationship between maternal asthma and risk for autism spectrum disorders

    Hadley OsmanPaul Ashwood
    1101-1102页

    Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis

    Xiahong TangNan ZhengQingming LinYan You...
    1103-1123页
    查看更多>>摘要:Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow-derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow-derived mesenchymal stem cells and oxygen-glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow-derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow-derived mesenchymal stem cells significantly reduced cardiac arrest-induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow-derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow-derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.

    Differential distribution of PINK1 and Parkin in the primate brain implies distinct roles

    Yanting LiuWei HuangJiayi WenXin Xiong...
    1124-1134页
    查看更多>>摘要:The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1-55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.

    Impacts of Nutlin-3a and exercise on murine double minute 2-enriched glioma treatment

    Yisheng ChenZhongcheng FanZhiwen LuoXueran Kang...
    1135-1152页
    查看更多>>摘要:Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients,with evidence suggesting exercise may reduce mortality risks and aid neural regeneration.The role of the small ubiquitin-like modifier(SUMO)protein,especially post-exercise,in cancer progression,is gaining attention,as are the potential anti-cancer effects of SUMOylation.We used machine learning to create the exercise and SUMO-related gene signature(ESLRS).This signature shows how physical activity might help improve the outlook for low-grade glioma and other cancers.We demonstrated the prognostic and immunotherapeutic significance of ESLRS markers,specifically highlighting how murine double minute 2(MDM2),a component of the ESLRS,can be targeted by nutlin-3.This underscores the intricate relationship between natural compounds such as nutlin-3 and immune regulation.Using comprehensive CRISPR screening,we validated the effects of specific ESLRS genes on low-grade glioma progression.We also revealed insights into the effectiveness of Nutlin-3a as a potent MDM2 inhibitor through molecular docking and dynamic simulation.Nutlin-3a inhibited glioma cell proliferation and activated the p53 pathway.Its efficacy decreased with MDM2 overexpression,and this was reversed by Nutlin-3a or exercise.Experiments using a low-grade glioma mouse model highlighted the effect of physical activity on oxidative stress and molecular pathway regulation.Notably,both physical exercise and Nutlin-3a administration improved physical function in mice bearing tumors derived from MDM2-overexpressing cells.These results suggest the potential for Nutlin-3a,an MDM2 inhibitor,with physical exercise as a therapeutic approach for glioma management.Our research also supports the use of natural products for therapy and sheds light on the interaction of exercise,natural products,and immune regulation in cancer treatment.

    The emerging role of mesenchymal stem cell-derived extracellular vesicles to ameliorate hippocampal NLRP3 inflammation induced by binge-like ethanol treatment in adolescence

    Susana MelladoMaría José Morillo-BarguesCarla Perpiñá-ClériguesFrancisco García-García...
    1153-1163页
    查看更多>>摘要:Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C-X3-C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.