首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    《中国图象图形学报》图像数据受限专栏简介

    刘怡光孙显赵启军魏秀参...
    2801-2802页

    数据受限条件下的多模态处理技术综述

    王佩瑾闫志远容雪娥李俊希...
    2803-2834页
    查看更多>>摘要:随着多媒体技术的发展,可获取的媒体数据在种类和量级上大幅提升.受人类感知方式的启发,多种媒体数据互相融合处理,促进了人工智能在计算机视觉领域的研究发展,在遥感图像解译、生物医学和深度估计等方面有广泛的应用.尽管多模态数据在描述事物特征时具有明显优势,但仍面临着较大的挑战.1)受到不同成像设备和传感器的限制,难以收集到大规模、高质量的多模态数据集;2)多模态数据需要匹配成对用于研究,任一模态的缺失都会造成可用数据的减少;3)图像、视频数据在处理和标注上需要耗费较多的时间和人力成本,这些问题使得目前本领域的技术尚待攻关.本文立足于数据受限条件下的多模态学习方法,根据样本数量、标注信息和样本质量等不同的维度,将计算机视觉领域中的多模态数据受限方法分为小样本学习、缺乏强监督标注信息、主动学习、数据去噪和数据增强5个方向,详细阐述了各类方法的样本特点和模型方法的最新进展.并介绍了数据受限前提下的多模态学习方法使用的数据集及其应用方向(包括人体姿态估计、行人重识别等),对比分析了现有算法的优缺点以及未来的发展方向,对该领域的发展具有积极的意义.

    多模态数据数据受限深度学习融合算法计算机视觉

    图像数据受限下的处理与分析

    刘怡光
    2835-2842页
    查看更多>>摘要:恶劣复杂及对抗环境下产生的图像数据通常受限,常具有非完整、不确定、小样本、小目标的全部或部分特性,与通常的图像大数据相比,对受限图像数据处理和分析的方法有明显区别:大数据的统计特性显著依赖于中心极限定理下的3σ原则,而受限下的图像数据统计一致性弱,难以体现可信且鲁棒的集中优势特点;遮挡、伪装等情况导致样本信息乃至维度都具有不完整性或非确定性,以模糊数学为基础的系列处理方法导致计算量剧增;以深度学习为代表的系列大数据处理方法得到巨大发展,但由于受限图像数据的处理和分析基本属于不可逆的逆问题,其解空间一般为高维子空间,如何可信鲁棒地确定空间中的解,目前尚无有效可行的通用理论和方法;采用隶属度为测度的系列方法需紧密依赖融入先验知识构造的代价函数.为促进受限图像数据的研究,梳理了对其处理和分析的机理、方法、手段以及遇到的困难,提出了可能的突破方法,以及催生的研究范式改变,以求抛砖引玉,吸引更多学者从事该研究.

    图像数据受限中心极限定理不可逆的逆问题模糊数学研究范式

    面向跨模态行人重识别的单模态自监督信息挖掘

    吴岸聪林城梽郑伟诗
    2843-2859页
    查看更多>>摘要:目的 在智能监控视频分析领域中,行人重识别是跨无交叠视域的摄像头匹配行人的基础问题.在可见光图像的单模态匹配问题上,现有方法在公开标准数据集上已取得优良的性能.然而,在跨正常光照与低照度场景进行行人重识别的时候,使用可见光图像和红外图像进行跨模态匹配的效果仍不理想.研究的难点主要有两方面:1)在不同光谱范围成像的可见光图像与红外图像之间显著的视觉差异导致模态鸿沟难以消除;2)人工难以分辨跨模态图像的行人身份导致标注数据缺乏.针对以上两个问题,本文研究如何利用易于获得的有标注可见光图像辅助数据进行单模态自监督信息的挖掘,从而提供先验知识引导跨模态匹配模型的学习.方法 提出一种随机单通道掩膜的数据增强方法,对输入可见光图像的3个通道使用掩膜随机保留单通道的信息,使模型关注提取对光谱范围不敏感的特征.提出一种基于三通道与单通道双模型互学习的预训练与微调方法,利用三通道数据与单通道数据之间的关系挖掘与迁移鲁棒的跨光谱自监督信息,提高跨模态匹配模型的匹配能力.结果 跨模态行人重识别的实验在"可见光—红外"多模态行人数据集SYSU-MM01(Sun Yat-Sen University Multiple Modality 01)、RGBNT201(RGB,near infrared,thermal infrared,201)和RegDB上进行.实验结果表明,本文方法在这3个数据集上都达到领先水平.与对比方法中的最优结果相比,在RGBNT201数据集上的平均精度均值mAP(mean average precision)有最高接近5%的提升.结论 提出的单模态跨光谱自监督信息挖掘方法,利用单模态可见光图像辅助数据挖掘对光谱范围变化不敏感的自监督信息,引导单模态预训练与多模态有监督微调,提高跨模态行人重识别的性能.

    行人重识别跨模态检索红外图像自监督学习互学习

    小样本条件下的RGB-D显著性物体检测

    何静傅可人
    2860-2872页
    查看更多>>摘要:目的 现有基于RGB-D(RGB-depth)的显著性物体检测方法往往通过全监督方式在一个较小的RGB-D训练集上进行训练,因此其泛化性能受到较大的局限.受小样本学习方法的启发,本文将RGB-D显著性物体检测视为小样本问题,利用模型解空间优化和训练样本扩充两类小样本学习方法,探究并解决小样本条件下的RGB-D显著性物体检测.方法 模型解空间优化通过对RGB和RGB-D显著性物体检测这两种任务进行多任务学习,并采用模型参数共享的方式约束模型的解空间,从而将额外的RGB显著性物体检测任务学习到的知识迁移至RGB-D显著性物体检测任务中.另外,训练样本扩充通过深度估计算法从额外的RGB数据生成相应的深度图,并将RGB图像和所生成的深度图用于RGB-D显著性物体检测任务的训练.结果 在9个数据集上的对比实验表明,引入小样本学习方法能有效提升RGB-D显著性物体检测的性能.此外,对不同小样本学习方法在不同的RGB-D显著性物体检测模型下(包括典型的中期融合模型和后期融合模型)进行了对比研究,并进行相关分析与讨论.结论 本文尝试将小样本学习方法用于RGB-D显著性物体检测,探究并利用两种不同小样本学习方法迁移额外的RGB图像知识,通过大量实验验证了引入小样本学习来提升RGB-D显著性物体检测性能的可行性和有效性,对后续将小样本学习引入其他多模态检测任务也提供了一定的启示.

    多模态检测RGB-D显著性检测小样本学习多任务学习深度估计

    面向目标检测的对抗样本综述

    袁珑李秀梅潘振雄孙军梅...
    2873-2896页
    查看更多>>摘要:目标检测是一种广泛应用于工业控制和航空航天等安全攸关场景的重要技术.随着深度学习在目标检测领域的应用,检测精度得到较大提升,但由于深度学习固有的脆弱性,使得基于深度学习的目标检测技术的可靠性和安全性面临新的挑战.本文对面向目标检测的对抗样本生成及防御的研究分析和总结,致力于为增强目标检测模型的鲁棒性和提出更好的防御策略提供思路.首先,介绍对抗样本的概念、产生原因以及目标检测领域对抗样本生成常用的评价指标和数据集.然后,根据对抗样本生成的扰动范围将攻击分为全局扰动攻击和局部扰动攻击,并在此分类基础上,分别从攻击的目标检测器类型、损失函数设计等方面对目标检测的对抗样本生成方法进行分析和总结,通过实验对比了几种典型目标检测对抗攻击方法的性能,同时比较了这几种方法的跨模型迁移攻击能力.此外,本文对目前目标检测领域常用的对抗防御策略进行了分析和归纳.最后,总结了目标检测领域对抗样本的生成及防御面临的挑战,并对未来发展方向做出展望.

    目标检测对抗样本深度学习对抗防御全局扰动局部扰动

    MRI脑肿瘤图像的超像素/体素分割及发展现状

    方玲玲王欣
    2897-2915页
    查看更多>>摘要:超像素/体素分割算法把具有相同结构信息的点划分至同一子区域,获得可准确描述图像局部特征且符合功能子结构的平滑边缘信息,在医学磁共振成像(magnetic resonance imaging,MRI)分割领域广泛应用.本文比较了不同超像素算法分割脑肿瘤医学图像的性能.归纳并总结了多种最新超像素/体素算法的研究成果及应用,为进一步比较算法性能,选取了多模态脑肿瘤分割挑战赛(Multimodal Brain Tumor Segmentation Challenge,BraTS)2018数据集中的部分脑肿瘤图像进行超像素分割.同时,通过边缘召回率、欠分割错误率、紧密度评测和可达分割准确率4项指标分析算法性能,并阐述算法的未来发展趋势和可行性空间.通过上述算法分析可得:基于图论的(graph-based)、标准化分割(normalized cut)、随机游走算法(lazy random walk)可获得精准的核心肿瘤信息,但对增强肿瘤的准确率稍显不足,不利于后续特征区域提取.基于密度的聚类算法(density-based spatial clustering of applications with noise,DBSCAN)和线性谱聚类(linear spectral clustering,LSC)算法可较好保留肿瘤边界信息,具有较好的局部局灶信息特征,但不能实现邻域信息表达,且没有解决质量跨度较大的问题.拓扑保持正则、Turbopix-els和简单线性迭代聚类分割算法(simple linear iterative clustering algorithm,SLIC)的超像素形状结构上更加完整紧凑,对病灶边界的特征描述较为平滑柔和,以此弥补算法对边界描述的不足之处.通过评价指标、国内外最新发展动态和实验对比分析,可看出超像素/体素分割算法具有较高的分割性能,研究领域具有良好的发展前景.

    图像处理磁共振成像(MRI)超像素/体素脑肿瘤分割评价指标

    图网络层级信息挖掘分类算法综述

    魏文超蔺广逢廖开阳康晓兵...
    2916-2936页
    查看更多>>摘要:深度学习作为人工智能的一个研究分支发展迅速,而研究数据主要是语音、图像和视频等,这些具有规则结构的数据通常在欧氏空间中表示.然而许多学习任务需要处理的数据是从非欧氏空间中生成,这些数据特征和其关系结构可以用图来定义.图卷积神经网络通过将卷积定理应用于图,完成节点之间的信息传播与聚合,成为建模图数据一种有效的方法.尽管图卷积神经网络取得了巨大成功,但针对图任务中的节点分类问题,由于深层图结构优化的特有难点——过平滑现象,现有的多数模型都只有两三层的浅层模型架构.在理论上,图卷积神经网络的深层结构可以获得更多节点表征信息,因此针对其层级信息进行研究,将层级结构算法迁移到图数据分析的核心在于图层级卷积算子构建和图层级间信息融合.本文对图网络层级信息挖掘算法进行综述,介绍图神经网络的发展背景、存在问题以及图卷积神经网络层级结构算法的发展,根据不同图卷积层级信息处理将现有算法分为正则化方法和架构调整方法.正则化方法通过重新构建图卷积算子更好地聚合邻域信息,而架构调整方法则融合层级信息丰富节点表征.图卷积神经网络层级特性实验表明,图结构中存在层级特性节点,现有图层级信息挖掘算法仍未对层级特性节点的图信息进行完全探索.最后,总结了图卷积神经网络层级信息挖掘模型的主要应用领域,并从计算效率、大规模数据、动态图和应用场景等方面提出进一步研究的方向.

    层级结构图卷积神经网络(GCN)注意力机制人工智能深度学习

    个性化图像美学评价的研究进展与趋势

    祝汉城周勇李雷达赵佳琦...
    2937-2951页
    查看更多>>摘要:图像美学评价方法是当前研究的热点问题.图像美学评价分为大众化和个性化两种.大众化图像美学评价主要研究大多数人对图像共同的审美感知评估,而个性化图像美学评价可以针对用户的个性化审美感知进行评估.现有的研究工作主要集中在大众化图像美学评价上,但是由于人们对图像的审美体验具有高度主观性,研究针对特定用户的个性化图像美学评价方法更加符合现实意义.目前研究人员针对个性化图像美学评价展开了相关研究,并取得了一定的研究进展.但是现有的文献中缺少对个性化图像美学评价方法的综述,本文针对个性化图像美学评价的研究进展与趋势进行概述.首先分析图像美学评价的研究现状与发展趋势;然后针对现阶段的个性化图像美学评价模型进行概述,将现有的个性化图像美学评价模型总结为基于协同过滤的模型、基于用户交互的模型和基于审美差异的模型,并分析这3类模型主要的设计思路以及优缺点;最后介绍个性化图像美学评价在精准营销、个性化推荐系统、个性化视觉增强和个性化艺术设计上的应用前景,并指出未来研究工作在主观特性分析和知识驱动建模等方面的发展方向.

    个性化图像美学评价方法审美体验主观特性知识驱动

    视盘和视杯分割在计算机辅助青光眼诊断中的应用综述

    方玲玲张丽榕
    2952-2971页
    查看更多>>摘要:青光眼是以视神经损伤、特征性视野损伤为特点的一类眼病,在早期很难诊断,尽早发现可更好地遏制青光眼病症的恶化,降低致盲率.视盘和视杯的比值是评价青光眼诊断中的重要指标之一,视盘和视杯的分割是青光眼诊断的关键步骤.但眼底彩照中的渗出物、不均匀照明区域等特征使其可能出现相似的亮度区域,导致视盘和视杯的分割非常困难.因此本文对现有眼底彩照中视盘和视杯的分割方法进行了总结,并将其分为5大类:水平集法、模态法、能量泛函法、划分法以及基于机器学习的混合法.系统地梳理了各类算法的代表性方法,以及基本思想、理论基础、关键技术、框架流程和优缺点等.同时,概括了适用于青光眼诊断的各种数据集,包括数据集的名称、来源以及详细内容,并总结了在各种数据集中不同视盘和视杯分割结果和诊断青光眼的量化指标及其相关结果.在现有的视盘和视杯分割方法中,许多图像处理和机器学习技术得到广泛应用.通过对该领域研究算法进行综述,清晰直观地总结了各类算法之间的特点及联系,有助于推动视盘和视杯分割在青光眼疾病临床诊断中的应用.可以在很大程度上提高临床医生的工作效率,为临床诊断青光眼提供了重要的理论研究意义和价值.

    眼底彩照视盘分割视杯分割青光眼诊断