查看更多>>摘要:目的 全景图像质量评价(omnidirectional image quality assessment,OIQA)旨在定量描述全景图像降质情况,对于算法提升和系统优化起着重要的作用.早期的O1QA方法设计思想主要是结合全景图像的几何特性(如两级畸变和语义分布不均匀)和2D-IQA方法,这类方法并未考虑用户的观看行为,因而性能一般;现有的O1QA方法主要通过模拟用户的观看行为,提取观看视口序列;进一步,计算视口序列失真情况,然后融合视口失真得到全景图像的全局质量.然而,观看视口序列预测较为困难,且预测模型的实时性和鲁棒性难以保证.为了解决上述问题,提出一种非视口依赖的抗畸变无参考(no reference,NR)OIQA(NR-OIQA)模型.针对全景图像等距柱状投影(equirect-angular projection,ERP)所带来的规律性几何畸变问题,提出一种可同时处理不规则语义和规律性畸变的新型卷积方法,称为等矩形可变形卷积方法,并基于该卷积方法构建NR-OIQA模型.方法 该模型主要由先验指导的图像块采样(prior-guided patch sampling,PPS)模块、抗畸变特征提取(deformation-unaware feature extraction,DUFE)模块和块内—块间注意力聚集(intra-inter patch attention aggregation,A-EPAA)模块3个部件组成.其中,PPS模块根据先验概率分布从高分辨率的全景图像采样提取相同分辨率的图像块;DUFE模块通过等矩形可变形卷积渐进式地提取输入图像块质量相关特征;A-EPAA模块旨在调整单个图像块内部特征以及各图像块对整体质量评价的影响程度,以提升模型对全景图像质量的评价准确度.结果 在3个公开数据集上将本文模型与其他IQA和O1QA模型进行性能比较,与性能第1的Assessor360相比,参数量减少了 93.7%,计算量减少了 95.4%;与模型规模近似的MC360IQA相比,在CVIQ、OIQA和JUFE数据集上的斯皮尔曼相关系数分别提升了 1.9%、1.7%和4.3%.结论 本文所提出的NR-OIQA模型,充分考虑了全景图像的特点,能够以不依赖视口的方式高效提取具有失真特性的质量特征,对全景图像进行准确质量评价,并具有计算量低的优点.