首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    中国图像工程:2021

    章毓晋
    1009-1022页
    查看更多>>摘要:本文是关于中国图像工程的年度文献综述系列之二十七.为了使国内广大从事图像工程研究和图像技术应用的科技人员能够较全面地了解国内图像工程研究和发展的现状,能够有针对性地查询有关文献,且向期刊编者和作者提供有用的参考,对2021年度图像工程相关文献进行了统计和分析.具体从国内15种有关图像工程重要中文期刊在2021年发行的所有154期上所发表的学术研究和技术应用文献(共2958篇)中,选取出所有属于图像工程领域的文献(共833篇),并根据各文献的主要内容将其分别归入图像处理、图像分析、图像理解、技术应用和综述评论5个大类,然后进一步分入23个专业小类(与前16年相同),并在此基础上分别进行了各期刊各类文献的统计和分析.根据对2021年统计数据的分析可以看出:图像分析方向当前得到了最多的关注,其中目标检测和识别、图像分割和边缘检测、人体生物特征提取和验证等都是研究的焦点.另外,遥感、雷达、声呐、测绘以及生物、医学等领域的图像技术开发和应用最为活跃.总的来说,中国图像工程在2021年的研究深度和广度还在继续提高和扩大,仍保持了快速发展的势头.综合27年的统计数据还为读者提供了更全面和更可信的各个研究方向发展趋势的信息.

    图像工程图像处理图像分析图像理解技术应用文献综述文献统计文献分类文献计量学

    人脸伪造及检测技术综述

    曹申豪刘晓辉毛秀青邹勤...
    1023-1038页
    查看更多>>摘要:人脸伪造技术的恶意使用,不仅损害公民的肖像权和名誉权,而且会危害国家政治和经济安全.因此,针对伪造人脸图像和视频的检测技术研究具有重要的现实意义和实践价值.本文在总结人脸伪造和伪造人脸检测的关键技术与研究进展的基础上,分析现有伪造和检测技术的局限.在人脸伪造方面,主要包括利用生成对抗技术的全新人脸生成技术和基于现有人脸的人脸编辑技术,介绍生成对抗网络在人脸图像生成的发展进程,重点介绍人脸编辑技术中的人脸交换技术和人脸重现技术,从网络结构、通用性和生成效果真实性等角度对现有的研究进展进行深入阐述.在伪造人脸检测方面,根据媒体载体的差异,分为伪造人脸图像检测和伪造人脸视频检测,首先介绍利用统计分布差异、拼接残留痕迹和局部瑕疵等特征的伪造人脸图像检测技术,然后根据提取伪造特征的差异,将伪造人脸视频检测技术分为基于帧间信息、帧内信息和生理信号的伪造视频检测技术,并从特征提取方式、网络结构设计特点和使用场景类型等方面进行详细阐述.最后,分析了当前人脸伪造技术和伪造人脸检测技术的不足,提出可行的改进意见,并对未来发展方向进行展望.

    人脸伪造伪造人脸检测生成对抗网络(GAN)人脸交换人脸重现

    MTMS300:面向显著物体检测的多目标多尺度基准数据集

    李楚为张志龙李树新
    1039-1055页
    查看更多>>摘要:目的 在显著物体检测算法发展过程中,基准数据集发挥了重要作用.然而,现有基准数据集普遍存在数据集偏差,难以充分体现不同算法的性能,不能完全反映某些典型应用的技术特点.针对这一问题,本文对基准数据集的偏差和统计特性展开定量分析,提出针对特定任务的新基准数据集.方法 首先,讨论设计和评价数据集时常用的度量指标;然后,定量分析基准数据集的统计学差异,设计新的基准数据集MTMS300(multiple targets and multiple scales);接着,使用基准数据集对典型视觉显著性算法展开性能评估;最后,从公开基准数据集中找出对多数非深度学习算法而言都较为困难(指标得分低)的图像,构成另一个基准数据集DSC(difficult scenes in common).结果 采用平均注释图、超像素数目等6种度量指标对11个基准数据集进行定量分析,MTMS300数据集具有中心偏差小、目标面积比分布均衡、图像分辨率多样和目标数量较多等特点,DSC数据集具有前景/背景差异小、超像素数量多和图像熵值高的特点.使用11个基准数据集对18种视觉显著性算法进行定量评估,揭示了算法得分和数据集复杂度之间的相关性,并在MTMS300数据集上发现了现有算法的不足.结论 提出的两个基准数据集具有不同的特点,有助于更为全面地评估视觉显著性算法,推动视觉显著性算法向特定任务方向发展.

    视觉显著性显著物体检测基准数据集多目标多尺度小目标

    利用条件生成对抗网络的光场图像重聚焦

    谢柠宇丁宇阳李明悦刘渊...
    1056-1065页
    查看更多>>摘要:目的 传统的基于子视点叠加的重聚焦算法混叠现象严重,基于光场图像重构的重聚焦方法计算量太大,性能提升困难.为此,本文借助深度神经网络设计和实现了一种基于条件生成对抗网络的新颖高效的端到端光场图像重聚焦算法.方法 首先以光场图像为输入计算视差图,并从视差图中计算出所需的弥散圆(circle of confu-sion,COC)图像,然后根据COC图像对光场中心子视点图像进行散焦渲染,最终生成对焦平面和景深与COC图像相对应的重聚焦图像.结果 所提算法在提出的仿真数据集和真实数据集上与相关算法进行评价比较,证明了所提算法能够生成高质量的重聚焦图像.使用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)进行定量分析的结果显示,本文算法比传统重聚焦算法平均PSNR提升了1.82 dB,平均SSIM提升了0.02,比同样使用COC图像并借助各向异性滤波的算法平均PSNR提升了7.92 dB,平均SSIM提升了0.08.结论 本文算法能够依据图像重聚焦和景深控制要求,生成输入光场图像的视差图,进而生成对应的COC图像.所提条件生成对抗神经网络模型能够依据得到的不同COC图像对输入的中心子视点进行散焦渲染,得到与之对应的重聚焦图像,与之前的算法相比,本文算法解决了混叠问题,优化了散焦效果,并显著降低了计算成本.

    光场图像重聚焦条件生成对抗网络弥散圆(COC)散焦渲染

    二阶变分图像恢复模型的重启动快速ADMM方法

    宋田田潘振宽魏伟波李青...
    1066-1083页
    查看更多>>摘要:目的 基于二阶导数的图像恢复变分模型可以同时保持图像边缘与光滑特征,但其规则项的非线性、非光滑性,甚至非凸性制约着其快速算法的设计.针对总拉普拉斯(total Laplacian,TL)与欧拉弹性能(Euler's elastica,EE)两种图像恢复变分模型,在设计快速交替方向乘子法(fast alternating direction methods of multipliers,fast ADMM)的基础上引入重启动策略,以有效消除解的振荡,从而大幅提高该类模型计算效率,并为其他相近模型的快速算法设计提供借鉴.方法 基于原始ADMM方法设计反映能量泛函变化的残差公式,在设计的快速ADMM方法中根据残差的变化重新设置快速算法的相关参数,以避免计算过程中的能量振荡,达到算法加速目的.结果 通过大量实验发现,采用原始ADMM、快速ADMM和重启动快速ADMM算法恢复图像的峰值信噪比(peak signal-to-noise ratio,PSNR)基本一致,但计算效率有不同程度的提高.与原始ADMM算法相比,在消除高斯白噪声和椒盐噪声中,对TL模型,其快速ADMM算法分别提高6%50%和13%240%;重启动快速ADMM算法提高100%433%和100%466%;对EE模型,其快速ADMM算法分别提高14%54%和10%83%;重启动快速ADMM算法分别提高100%900%和66%800%.此外,对于不同的惩罚参数组合,相同模型的快速ADMM算法的计算效率基本相同.结论 对于两种典型的二阶变分图像恢复模型,本文提出的快速重启动ADMM算法比原始ADMM算法及快速ADMM算法在计算效率方面有较大提高,计算效率对不同惩罚参数组合具有鲁棒性.本文设计的算法对于含其他形式二阶导数规则项的变分图像分析模型的重启动快速算法的设计可提供有益借鉴.

    图像恢复二阶变分模型快速交替方向乘子方法(fastADMM)重启动总拉普拉斯模型欧拉弹性能模型

    残差密集结构的东巴画渐进式重建

    蒋梦洁钱文华徐丹吴昊...
    1084-1096页
    查看更多>>摘要:目的 东巴画具有内容丰富、线条疏密相间、色彩多样的独特艺术风格,将现有针对自然图像的超分辨率算法直接应用于低分辨率东巴画时,对东巴画线条、色块以及材质的重建效果不理想.为了有效提高东巴画数字图像分辨率,本文针对东巴画提出超分辨率重建方法.方法 首先,针对东巴画图像包含丰富高频信息的特点搭建重建网络,网络整体结构采用多级子网络级联方式渐进地重建出高分辨率东巴画,多级子网络标签共同指导重建,减少了东巴画图像在上采样过程中高频细节的丢失,每一级子网络内部均包含浅层特征提取模块和以残差密集结构为核心的深层特征提取模块,分别提取东巴画不同层次的特征进行融合,改善了卷积层简单的链式堆叠造成的特征丢失.其次,为了进一步提升重建东巴画的视觉质量,在像素损失的基础上引入感知损失和对抗损失进行对抗训练.最后,为了使网络对东巴画图像特征的学习更具针对性,本文自建东巴画数据集用于网络训练.结果 实验结果表明,在本文东巴画测试集set20上,当上采样因子为8时,相较于Bicubic(bicubic interpolation)、SRCNN(super-resolution convolutional neural network)、Srresnet(super-resolution residual network)和IMDN(information multi-distillation network)方法,本文算法的峰值信噪比分别增加了3.28 dB、1.80 dB、0.23 dB和0.36 dB,重建东巴画的主观视觉质量也得到了更好的结果.结论 本文提出的超分辨率网络模型能有效提高低分辨率东巴画的分辨率和清晰度,并且具有普适性,亦可采用其他数据集进行训练以拓展应用范围.

    东巴画超分辨率渐进式重建残差密集对抗训练

    融合自注意力机制的生成对抗网络跨视角步态识别

    张红颖包雯静
    1097-1109页
    查看更多>>摘要:目的 针对目前基于生成式的步态识别方法采用特定视角的步态模板转换、识别率随视角跨度增大而不断下降的问题,本文提出融合自注意力机制的生成对抗网络的跨视角步态识别方法.方法 该方法的网络结构由生成器、视角判别器和身份保持器构成,建立可实现任意视角间步态转换的网络模型.生成网络采用编码器—解码器结构将输入的步态特征和视角指示器连接,进而实现不同视角域的转换,并通过对抗训练和像素级损失使生成的目标视角步态模板与真实的步态模板相似.在判别网络中,利用视角判别器来约束生成视角与目标视角相一致,并使用联合困难三元组损失的身份保持器以最大化保留输入模板的身份信息.同时,在生成网络和判别网络中加入自注意力机制,以捕捉特征的全局依赖关系,从而提高生成图像的质量,并引入谱规范化使网络稳定训练.结果 在CASIA-B(Chinese Academy of Sciences'Institute of Automation gait database——dataset B)和OU-MVLP(OU-ISIR gait database-multi-view large population dataset)数据集上进行实验,当引入自注意力模块和身份保留损失训练网络时,在CASIA-B数据集上的识别率有显著提升,平均rank-1准确率比GaitGAN(gait generative adversarial network)方法高15%.所提方法在OU-MVLP大规模的跨视角步态数据库中仍具有较好的适用性,可以达到65.9%的平均识别精度.结论 本文方法提升了生成步态模板的质量,提取的视角不变特征更具判别力,识别精度较现有方法有一定提升,能较好地解决跨视角步态识别问题.

    机器视觉步态识别跨视角自注意力生成对抗网络(GANs)

    着装场景下双分支网络的人体姿态估计

    吕中正刘骊付晓东刘利军...
    1110-1124页
    查看更多>>摘要:目的 人体姿态估计旨在识别和定位不同场景图像中的人体关节点并优化关节点定位精度.针对由于服装款式多样、背景干扰和着装姿态多变导致人体姿态估计精度较低的问题,本文以着装场景下时尚街拍图像为例,提出一种着装场景下双分支网络的人体姿态估计方法.方法 对输入图像进行人体检测,得到着装人体区域并分别输入姿态表示分支和着装部位分割分支.姿态表示分支通过在堆叠沙漏网络基础上增加多尺度损失和特征融合输出关节点得分图,解决服装款式多样以及复杂背景对关节点特征提取干扰问题,并基于姿态聚类定义姿态类别损失函数,解决着装姿态视角多变问题;着装部位分割分支通过连接残差网络的浅层特征与深层特征进行特征融合得到着装部位得分图.然后使用着装部位分割结果约束人体关节点定位,解决服装对关节点遮挡问题.最后通过姿态优化得到最终的人体姿态估计结果.结果 在构建的着装图像数据集上验证了本文方法.实验结果表明,姿态表示分支有效提高了人体关节点定位准确率,着装部位分割分支能有效避免着装场景中人体关节点误定位.在结合着装部位分割优化后,人体姿态估计精度提高至92.5%.结论 本文提出的人体姿态估计方法能够有效提高着装场景下的人体姿态估计精度,较好地满足虚拟试穿等实际应用需求.

    着装场景人体检测姿态估计语义分割姿态优化

    嵌入双尺度分离式卷积块注意力模块的口罩人脸姿态分类

    陈森楸刘文波张弓
    1125-1136页
    查看更多>>摘要:目的 针对口罩遮挡的人脸姿态分类新需求,为了提高基于卷积神经网络的人脸姿态分类效率和准确率,提出了一个轻量级卷积神经网络用于口罩人脸姿态分类.方法 本文设计的轻量级卷积神经网络的核心为双尺度可分离注意力卷积单元.该卷积单元由3×3和5×5两个尺度的深度可分离卷积并联而成,并且将卷积块注意力模块(convolutional block attention module,CBAM)的空间注意力模块(spatial attention module,SAM)和通道注意力模块(channel attention module,CAM)分别嵌入深度(depthwise,DW)卷积和点(pointwise,PW)卷积中,针对性地对DW卷积及PW卷积的特征图进行调整.同时对SAM模块补充1×1的点卷积挤压结果增强其对空间信息的利用,形成更加有效的注意力图.在保证模型性能的前提下,控制构建网络的卷积单元通道数和单元数,并丢弃全连接层,采用卷积层替代,进一步轻量化网络模型.结果 实验结果表明,本文模型的准确率较未改进SAM模块分离嵌入CBAM的模型、标准方式嵌入CBAM的模型和未嵌入注意力模块的模型分别提升了2.86%、6.41%和12.16%.采用双尺度卷积核丰富特征,在有限的卷积单元内增强特征提取能力.与经典卷积神经网络对比,本文设计的模型仅有1.02 MB的参数量和24.18 MB的每秒浮点运算次数(floating-point operations per second,FLOPs),大幅轻量化了模型并能达到98.57%的准确率.结论 本文设计了一个轻量高效的卷积单元构建网络模型,该模型具有较高的准确率和较低的参数量及计算复杂度,提高了口罩人脸姿态分类模型的效率和准确率.

    轻量级卷积神经网络口罩人脸姿态分类深度可分离卷积卷积块注意力模块(CBAM)深度学习新冠肺炎(COVID-19)

    联合损失优化下的高相似度奶山羊身份识别

    尚诚王美丽宁纪锋李群辉...
    1137-1147页
    查看更多>>摘要:目的 动物个体身份识别一直是智慧畜牧业的主要难题之一,由于动物个体本身与人类在图像识别上需要的数据特征不同以及各个特征作为个体属性之间的关系不明确,对动物个体识别领域的研究较少,针对具有高相似度的奶山羊个体身份识别问题,提出了基于深度学习的高相似度的奶山羊识别方法.方法 采集了26只萨能奶山羊的全身图像,利用SSD(single shot MultiBox detection)网络进行数据集预处理,并随机选取1040幅图像作为训练集,260幅图像作为测试集.其次采用ResNet18(residual neural network)预训练模型并进行迁移学习,最后联合三元组损失函数与交叉熵损失函数进行参数调整.研究表明,采用联合损失函数并结合Adam优化器算法时,可获得较好的识别效果.此外,在实验部分针对奶山羊的特征选取问题上,对奶山羊的羊脸区域与奶山羊的全身区域分别采用了三元组损失函数与孪生网络,验证了对奶山羊的识别仅靠羊脸区域的特征时准确率较低;此外,针对网络的训练,本文不仅通过YOLOv3(you only look once)以及孪生网络(siamese network)验证了奶山羊本身属于高相似度的数据集,而且针对奶山羊数据集分别采用三元组损失函数与交叉熵损失函数作为唯一的损失函数,并验证了该方法的有效性.结果 奶山羊识别的最高精准度为93.077%,相较于Triplet-Loss损失函数74.615%的准确率以及CrossEntropy-Loss 89.615%准确率有了较大提升.结论 本文提出的基于深度学习的高相似度的奶山羊识别方法不仅具有较高的准确率,而且在奶山羊个体身份识别方面具有极大的应用价值,有助于准确识别羊的身份,为相似度高的动物个体身份识别提供了思路.

    深度学习奶山羊个体身份识别Triplet-Loss联合损失函数迁移学习