首页|基于改进YOLOv8n模型的草莓识别方法

基于改进YOLOv8n模型的草莓识别方法

扫码查看
针对复杂背景下小目标草莓检测识别率低的问题,本文提出一种改进的YOLOv8n模型,来提升草莓目标识别的精度.首先在模型结构中引入SPD-Conv模块,用以增强模型对小物体和低分辨率图像的处理能力,提高在复杂场景下的鲁棒性,随后整合YOLOv10提出的PSA注意力机制,以低计算成本提升模型的全局表示学习能力,进一步增强模型性能,最后使用WIoU损失函数以替代CIoU损失函数,解决原损失函数的局限性.改进后的YOLOv8n模型相比原始模型,精度提升0.9个百分点,召回率增加4.3个百分点.此外,mAP0.5和mAP0.5:0.95分别提高了 3个百分点和3.5个百分点.改进的YOLOv8n模型显著提升了草莓目标检测的精度,在复杂背景下对小目标的草莓具有更优异的检测表现.
Strawberry recognition method based on improved YOLOv8n model
Addressing the low recognition rate of small strawberry targets in complex backgrounds,this study proposed an improved YOLOv8n model to enhance the accuracy of strawberry target recognition.In the experimental process,the SPD-Conv module was incorporated into the model structure to improve the model's ability to handle small objects and low-resolution images,thereby increasing robustness in complex scenes.The PSA attention mechanism proposed by YOLOv10 was then integrated to embed global representation learning capability at a low computational cost,further enhancing model performance.Lastly,the WIoU loss function replaced the CIoU loss function to address its limitations.Compared to the original model,the improved YOLOv8n model achieved 0.9%increase in precision and 4.3%increase in recall.Additionally,mAP50 and mAP50-95 was improved by 3%and 3.5%,respectively.The improved YOLOv8n model significantly enhanced the accuracy of strawberry target detection and demonstrated superior detection performance for small strawberry targets in complex backgrounds.

YOLOv8nSPD-ConvPSPWIoUstrawberry detection

李东辉、余宏杰

展开 >

安徽科技学院机械工程学院,安徽凤阳 233100

安徽科技学院信息与网络工程学院,安徽蚌埠 233000

YOLOv8n SPD-Conv PSA WIoU 草莓检测

2025

安徽科技学院学报
安徽科技学院

安徽科技学院学报

影响因子:0.434
ISSN:1673-8772
年,卷(期):2025.39(1)