首页|基于YOLOv5的印刷电路板表面缺陷检测

基于YOLOv5的印刷电路板表面缺陷检测

扫码查看
针对印刷电路板表面缺陷检测效果不理想,本文提出一种改进的YOLOv5检测模型,采用浅层特征图,并针对数据集中印刷电路板表面缺陷的像素大小进行重聚类锚框;使用NGWD损失函数替代CIoU定位损失函数,加入Biformer注意力机制.在保证模型轻量化的同时,达到了 0.953的平均检测精度.改进算法能够有效提高印刷电路板表面缺陷检测能力.
Detection of surface defects of printed circuit board based on YOLOv5
An improved YOLOv5 detection model was proposed for the unsatisfactory detection effect of PCB surface defects.The shallow feature map was used to reunite the anchor frame according to the pixel size of PCB surface defects in the data set.The NGWD loss function was used instead of the CIoU localization loss function,and the Biformer attention mechanism was added.The average detection accuracy of 0.953 was achieved while ensuring the lightweight of the model.The improved algorithm could effectively improve the surface defect detection ability of printed circuit board.

defect detectionYOLOv5scale detection layer transformationNGWDBiformer

范泽鹏、张乐平、杨迎新

展开 >

江西理工大学能源与机械工程学院,江西南昌 330013

缺陷检测 YOLOv5 尺度检测层变换 NGWD Biformer

2025

安徽科技学院学报
安徽科技学院

安徽科技学院学报

影响因子:0.434
ISSN:1673-8772
年,卷(期):2025.39(1)