首页|集合预报在贵州最低气温中的应用

集合预报在贵州最低气温中的应用

扫码查看
基于日常预报业务应用的欧洲中期天气预报中心(ECMWF)、日本气象厅(JMA)和中国气象局(CMA)所提供的地面最低气温预报资料,在贵州境内展开多模式集合预报研究,为使预报效果更优化,进一步将滑动系数应用于预报模型中,并将其结果与简单的多模式集合平均和各业务中心预报进行比较。结果表明,在2013年1月1日~2014年4月30日24~120 h 预报中,多模式集合预报(SUP)结果明显降低了预报的均方根误差,结果远优于 ECMWF 和集合平均预报(EMN),在整个贵州区域中,均方根误差<1.5℃的区域远高于 ECMWF 和 EMN;EMN 在一定程度上相对各中心预报有所改善,效果与 SUP 一样优于 ECMWF,但在48 h 后效果改善不明显。
Application of Multi-model Ensemble Method for Minimum Temperature in Guizhou Province
Based on the data taken from China Meteorological Administration (CMA), Japan Meteorological Agency (JMA) and European Cen-tre for Medium-range Weather Forecasts (ECMWF), the multi-model ensemble forecast methods for minimum temperature were carried out in Guizhou Province.The slipping coefficient was applied in the forecast model, which result was compared with single multi-model ensemble mean and the routine forecast.The result showed that the multi-model ensemble method evidently reduced the forecast RMSE in the forecast of 24 -120 h from Jan.1, 2013 to Apr.30, 2014.And there was a considerable improvement on forecast skill over the ECMWF EMN.The areas of RMSE less than 1.5 ℃ was higher than ECMWF and EMN in Guizhou, and also, the EMN was better than ECMWF in 24 -48 h, however, it had not obvi-ous improvement after 48 h.

Lowest temperatureMulti-model EnsembleEnsemble MeanRMSEGuizhou

李刚、谢清霞、魏涛

展开 >

贵州省气象台,贵州贵阳550002

最低气温 多模式集合 集合平均 均方根误差 贵州

国家预报员专项项目贵州省气象局2015年度业务攻关项目国家气象关键技术集成与应用面上)项目

CMAYBY2016-065GZGG201501CMAGJ2014M45

2016

安徽农业科学
安徽省农业科学院

安徽农业科学

影响因子:0.413
ISSN:0517-6611
年,卷(期):2016.44(14)
  • 1
  • 5