首页|基于优化光谱指数的夏玉米地上生物量估算

基于优化光谱指数的夏玉米地上生物量估算

扫码查看
以夏玉米为研究对象,首先获取拔节期、大喇叭口期、抽雄期和灌浆期4 个关键生育期的地面高光谱数据,并实测各生育期的地上生物量(AGB);其次基于任意波段组合的波段优化算法,分别构造6种不同波段组合形式的两波段和三波段光谱指数;然后将构造的12种光谱指数与地面实测的AGB进行相关性分析,从中筛选出相关性最好的光谱指数作为最优光谱指数构建夏玉米全生育期的AGB估算模型;最后对最优光谱指数估算夏玉米各关键生育期AGB的性能进行系统评价.结果表明:基于波段优化算法筛选的最优三波段光谱指数TBI6(760,925,895)与夏玉米各生育期和全生育期的AGB均具有良好的相关性,其构建的AGB估算模型具有较高的精度,可为夏玉米全生育期AGB的快速无损估算及AGB监测装置的集成与开发提供参考.
Estimation of Aboveground Biomass of Summer Maize Based on Optimized Spectral Index
Summer maize was used as the research object,firstly,ground hyperspectral data were obtained for four key fertility stages(pulling stage,trumpeting stage,tasseling stage,filling stage),and the above-ground biomass(AGB)of each fertility stage was measured empirically.Secondly,waveband optimization algorithms based on arbitrary waveband combinations were constructed for six different waveband combination forms of two-band and three-band spectral indices,respectively.Then,the 12 constructed spectral indices were correlated with the ground-truthed AGB,from which the best correlated spectral index was selected as the optimal spectral index to construct the AGB estimation model for summer maize at full fertility.Finally,the performance of the optimal spectral index for estimating AGB at each critical fertility stage of summer maize was systematically evaluated.The results showed that the optimal three-band spectral index TBI6(760,925,895)screened based on the band optimization algorithm had good correlation with the AGB of summer maize at all fertility stages and the whole fertility peri-od,and the AGB estimation model constructed by it had high accuracy,which could provide a reference for the rapid and nondestructive esti-mation of AGB of summer maize at the whole fertility period and the integration and development of AGB monitoring devices.

Summer maizeAbove-ground biomass(AGB)HyperspectralSpectral indexBand optimization algorithm

王涵、张王菲、杨浩

展开 >

西南林业大学林学院,云南昆明 650224

国家农业信息化工程技术研究中心,北京 100097

夏玉米 地上生物量 高光谱 光谱指数 波段优化算法

国家重点研发项目

2021YFD2000102

2023

安徽农业科学
安徽省农业科学院

安徽农业科学

影响因子:0.413
ISSN:0517-6611
年,卷(期):2023.51(24)
  • 14