首页|基于KNN-SVM算法的温室番茄生长预测模型

基于KNN-SVM算法的温室番茄生长预测模型

扫码查看
为解决现有温室番茄生长模型预测准确率低的问题,依据番茄生理学的基本特点,以温室内的环境参数为模型变量,建立了温室番茄生长发育的非线性模型.该模型描述了温室内温度、湿度、土壤温度、土壤湿度等环境因子对番茄发育速度的影响,模型具有良好的解释能力和较高的精度.首先,将利用各类传感器对吉林省吉林市温室番茄生长的各类环境数据进行收集;然后,对番茄温室的实际数据进行处理,再利用KNN算法对缺失和异常数据进行补充,并进行相关性分析;最后,在处理完成的番茄作物生长数据的基础上,考虑番茄作物对温室环境的实时反馈,结合相关性利用SVM优化算法对2020—2021年的吉林市经开区温室番茄数据进行模拟,得到SVM、LDA、LR的准确率分别为0.904、0.885、0.865.结果表明,SVM可以更好地预测番茄的生长变化.温室番茄作物—环境互作模型的建立,为温室环境控制打下了良好基础.
A Growth Prediction Model for Greenhouse Tomatoes Based on KNN-SVM Algorithm
In order to solve the problem of low prediction accuracy of the existing greenhouse tomato growth model, a non-linear model of greenhouse tomato growth and development was established based on the basic characteristics of tomato physiology, and the environmental pa-rameters in the greenhouse were used as model variables. This model described the influence of environmental factors, such as temperature, humidity, soil temperature and soil moisture in the greenhouse on the growth rate of tomato. The model had good explanatory ability and high precision. First of all, various sensors were used to collect various environmental data of tomato growth in the greenhouse of Jilin City, Jilin Province. Then, the actual data of the tomato greenhouse was preliminarily processed, and then the KNN algorithm was used to supplement missing and abnormal data, and correlation analysis was carried out. Finally, based on the processed tomato crop growth data, we considered the real-time feedback of tomato crops to the greenhouse environment. Combining with the correlation, we used the SVM optimization algorithm to analyze the greenhouse tomato data of Jilin Economic Development Zone from 2020 to 2021. After simulation, the accuracy rates of SVM, LDA and LR were 0.904, 0.885 and 0.865, respectively. The results showed that SVM could better predict the growth changes of tomato. The establishment of the greenhouse tomato crop-environment interaction model laid a good foundation for the greenhouse environment prediction control.

Greenhouse environmentEnvironmental monitoringKNN-SVMGrowth prediction model

唐友、张威

展开 >

吉林化工学院信息与控制工程学院,吉林吉林132022

吉林农业科技学院电气与信息工程学院,吉林吉林132101

温室环境 环境监测 KNN-SVM 生长预测模型

吉林省科技发展计划

YDZJ202201ZYTS-692

2024

安徽农业科学
安徽省农业科学院

安徽农业科学

影响因子:0.413
ISSN:0517-6611
年,卷(期):2024.52(10)
  • 12