首页|基于注意力机制和深度神经网络的中华绒螯蟹品级快速鉴定方法研究

基于注意力机制和深度神经网络的中华绒螯蟹品级快速鉴定方法研究

扫码查看
提出一种基于注意力机制和深度神经网络(YOLO-v7)的中华绒螯蟹品质快速预测的新方法.首先,蟹在自然环境中生长会形成背部花纹特征,根据形态测量学将其划分为侧齿、龙骨脊、额突、疣突、颈沟、复眼6种特征,提出基于对称度的特征定量计算方法,并根据视觉注意力机制可视化YOLO-v7模型中对分类精准度较高的区域,采用LabelImg图像标记软件分别对差异较大的前5种组合特征进行活力品级标记,然后基于YOLO-v7模型对标记好的数据进行训练和推理,得到最优中华绒螯蟹品级鉴定和预测模型.结果显示,疣突+颈沟的蟹背纹理组合特征可实现中华绒螯蟹品级的快速识别,总体训练准确率可以达到95.0%,总体推理准确率可以达到96.2%,且每只河蟹活力品级的推理时间不超过0.5 s.该方法具有较大的应用前景和市场价值,为开发大规模中华绒螯蟹在线品质的无损检测装备提供关键技术.
Rapid Identification Method of Chinese Mitten Crab Based on Attention Mechanism and Deep Neural Network
We established a mathematical model for predicting the health status of Chinese mitten crab based on deep inference model (YO-LO-v7).Firstly,crabs grew in the natural environment form the back pattern characteristics,which could be divided into six features of lateral teeth,keel ridge,frontal gibbosity,verruca process,neck groove,compound eye according to morphometrics.Based on the human visual attention mechanism,the effective feature characterizations were visualized with higher classification accuracy in the YOLO-v7 model.Moreover,accord-ing to the calculation results,the image labeling software-LabelImg was used to mark the vitality grade of the first five different feature combina-tion modes,respectively.Then,the YOLO-v7 model was used to train and reason the marked data,and the optimal Chinese mitten crab freshness identification model was obtained.The experimental results showed that the proposed texture feature combination algorithm of verruca process+cervical groove could basically realize the recognition of the health status of Chinese mitten crab. The overall training accuracy could reach 95%,the reasoning accuracy could reach 96.20%.Moreover,the reasoning time of each vitality grade of Chinese mitten crab was less than one second.This method had great application prospect and market value,which provided key technology for developing nondestructive testing e-quipment for large-scale online quality of Chinese mitten crab.

Chinese mitten crabRapid identificationHealth statusYOLO-v7Combination feature

孙淑媛、刘子豪、陈伟杰、王金星、范慧慧、王柳、詹立俭、鹿业波

展开 >

长兴县农业技术推广服务总站,浙江湖州 313199

嘉兴学院信息科学与工程学院,浙江嘉兴 314001

长兴县水产与农机中心,浙江湖州313199

浙江省农业科学院农产品质量安全与营养研究所,浙江杭州310022

浙江金渔生物科技有限公司,浙江嘉兴310002

展开 >

中华绒螯蟹 快速鉴别 外观品级 YOLO-v7模型 组合特征

2024

安徽农业科学
安徽省农业科学院

安徽农业科学

影响因子:0.413
ISSN:0517-6611
年,卷(期):2024.52(14)