首页|农田涝灾遥感影像特征分析及提取方法研究

农田涝灾遥感影像特征分析及提取方法研究

扫码查看
农田涝灾遥感识别并非简单的水域信息增强与提取,因"作物-水体"的复合而呈现特定的空间异质性和复杂性.基于遥感等空间信息技术手段,研究顾及多种农田涝灾影像特征的涝灾信息快速提取方法.2021年7月中下旬,河南省经历了特大洪涝灾害,以卫辉市和浚县为研究区域,使用Sentinel-2影像数据,分析农田涝灾的影像特征,基于归一化植被指数,快速提取了卫辉市和浚县的农田涝灾空间分布信息.经实地采集的信息验证,2县(市)提取精度均在90%以上.
Image Feature Analysis and Extraction Method Study of Farmland Waterlogging Based on Remote Sensing
The previous researches on the recognition of farmland waterlogging using remote sensing usually focus on the enhancement and ex-traction of waterbody information.In fact,the features of farmland waterlogging in remote sensing image are different from those of water,pres-enting specific heterogeneity and complexity due to the composite of crops and waterbody.The method of rapid extraction of farmland waterlog-ging based on spatial information technology was explored,which takes into account the complexity of farmland waterlogging.Mid to late July in 2021,catastrophic flood disaster occurred in Henan Province.Taking Weihui City and Junxian as the research areas and Sentinel 2 image as the main data,we analyzed the image characteristics of farmland flood disasters and the distribution information of farmland waterlogging in research areas was extracted by combining normalization difference vegetation index and visual interpretation.The accuracies of the two re-search areas were more than 90%,based on the in situ data.

Farmland waterloggingComposite informationImage characteristicsInformation extraction

陈媛媛、焦为杰、王来刚、贾少荣、王亚鑫、韩巍、游炯、胡华浪

展开 >

农业农村部大数据发展中心,北京 100125

河南省农业科学院,河南郑州 450002

农田涝灾 复合信息 影像特征 信息提取

2024

安徽农业科学
安徽省农业科学院

安徽农业科学

影响因子:0.413
ISSN:0517-6611
年,卷(期):2024.52(23)