首页|鸡常见疾病知识图谱构建及应用

鸡常见疾病知识图谱构建及应用

扫码查看
鸡疫病问题一直是养殖业面临的重大挑战之一,传统的疾病防治方法往往局限于单一病种、单一领域,难以对不同疾病之间的关联和交叉感染进行全面有效地监控和防治,知识管理技术有待提高.针对以上问题,该研究利用知识图谱构建技术,对鸡常见疾病知识进行系统整合和建模,利用大语言模型进行知识抽取与消歧,实现了15类常见疾病的高效管理,并通过Neo4j图数据库实现了知识图谱的存储与可视化.最后,展示了鸡常见疾病知识图谱在鸡疾病信息查询、智能辅助诊断等方面的应用,为养殖业的可持续发展提供了有力的技术支持和决策参考.
Construction and Application of Knowledge Graph for Common Chicken Diseases
The avian disease issue has always been a significant challenge in the poultry industry.Traditional disease control methods often limit themselves to a single disease or a specific domain,making it difficult to comprehensively and effectively monitor and control the interre-lationships and cross-infections among different diseases.Knowledge management technology needs improvement to address these issues.To tackle these challenges,we leveraged knowledge graph construction techniques to systematically integrate and model the knowledge of common chicken diseases.Employing large language models for knowledge extraction and disambiguation,this approach effectively managed 15 com-mon diseases,achieving efficient knowledge management.Additionally,the study used Neo4j graph database for knowledge graph storage and visualization.Lastly,we demonstrated the application of the knowledge graph of common chicken diseases in areas,such as chicken disease information retrieval and intelligent diagnostic assistance,providing robust technical support and decision references for the sustainable devel-opment of the poultry industry.

ChickenCommon diseasesKnowledge graphLarge language modelNeo4j

张小敏、朱逸航、俞深、饶秀勤

展开 >

浙江大学生物系统工程与食品科学学院,浙江杭州 310058

浙江省农业智能装备与机器人重点实验室,浙江杭州 310058

浙江交通职业技术学院,浙江杭州 311112

北京科技大学计算机与通信工程学院,北京 100083

展开 >

常见疾病 知识图谱 大语言模型 Neo4j

2024

安徽农业科学
安徽省农业科学院

安徽农业科学

影响因子:0.413
ISSN:0517-6611
年,卷(期):2024.52(23)