首页|基于YOLOV7的改进汽车零件缺陷检测算法

基于YOLOV7的改进汽车零件缺陷检测算法

扫码查看
汽车零部件缺陷检测通常采用基于YOLOV7 的深度学习模型,针对生产环境中计算资源受限的问题,提出了改进YOLOV7 的汽车零部件表面缺陷检测算法,首先使用MobileNetV3模块替换YOLOV7骨干网络,其次将颈部网络替换为重复加权双向特征金字塔网络BiFPN和多路径高效设计BepC3模块,最后采用一种基于高斯Wasserstein距离的回归损失函数代替原有的损失函数.实验结果表明,该算法相较传统YOLOV7的AP50精度提高0.155,比YOLOx算法AP50精度提高0.139,在检测精度和效率方面综合表现优异.
Detection Method of Auto Parts Defects Based on Improved YOLOV7
The defect detection of automotive components usually adopts a deep learning model based on YO-LOV7.In response to the problem of limited computing resources in the production environment,an improved YOLOV7 surface defect detection method for automotive components is proposed.Firstly,the lightweight net-work model MobileNetV3 is used to replace the YOLOV7 backbone feature extraction network.Secondly,the neck network is replaced with a repeated weighted bidirectional feature pyramid network BiFPN and a multi-path efficient design BepC3 module.Finally,a regression loss function based on Gaussian Wasserstein distance is used to replace the original loss function.The experimental results show that the algorithm improves the accuracy of AP50 by 0.155 compared to the traditional YOLOV7 and 0.139 compared to the YOLOx algorithm.It performs excellently in both detection accuracy and efficiency.

part defect detectionYOLOV7Mobile NetV3data enhancementlightweight network

申科翔、方群

展开 >

安徽师范大学 计算机与信息学院,安徽 芜湖 241003

零件缺陷检测 YOLOV7 MobileNetV3 数据增强 轻量化网络

国家自然科学基金项目

61871412

2024

安徽师范大学学报(自然科学版)
安徽师范大学

安徽师范大学学报(自然科学版)

CSTPCD
影响因子:0.435
ISSN:1001-2443
年,卷(期):2024.47(2)
  • 9