首页|基于支持向量机算法的音乐风格识别系统

基于支持向量机算法的音乐风格识别系统

扫码查看
音乐风格分类是音乐信息检索和音乐推荐当中的重要一环,它对音乐风格分类效率的要求越来越高.然而,音乐风格的识别对于非专业人士而言是比较困难的,因此我们建立了一种基于机器学习的音乐风格识别系统,该文研究对象为最具代表性的4类音乐风格,并选取47首爵士风格音乐、47首摇滚风格音乐、42首古典风格音乐以及40首现代风格音乐作为样本,应用快速傅里叶变换、图像特征提取,结合机器学习模型,建立了基于支持向量机算法的音乐风格识别系统,最终实现了四种音乐风格的同时识别.该模型用于盲测的AUC(受试者工作特征曲线下面积)平均值为0.871,分类的准确率为71.7%.
Music Style Recognition System Based on Support Vector Machine Algorithm
Music style classification is an important part of music information retrieval and music recommenda-tion.It requires higher and higher efficiency of music style classification.However,the recognition of music style is relatively difficult for non-professionals,so a music style recognition system has been established based on machine learning.Taking the four most representative music styles as its research object,this paper selected 47 jazz style music,47 rock style music,42 classical style music and 40 modern style music as samples,applied fast Fourier transform,image embedding,and combined with the machine learning model to establish a music style recognition system based on the support vector machine algorithm,and finally realized the simultaneous recognition of four music styles.The average value of the AUC(area under the working characteristic curve of the subject)used by this model for blind testing was 0.871,and the classification accuracy rate was 71.7%.

Support vector machine algorithmmusic stylefast Fourier transform

罗红霞、罗娜

展开 >

浙江音乐学院 戏剧系,浙江 杭州 310024

萍乡学院 教育学院,江西 萍乡 337055

支持向量机算法 音乐风格 快速傅里叶变换

教育部人文社会科学研究青年项目

22YJC760063

2024

安徽师范大学学报(自然科学版)
安徽师范大学

安徽师范大学学报(自然科学版)

CSTPCD
影响因子:0.435
ISSN:1001-2443
年,卷(期):2024.47(2)
  • 20