首页|基于不同模型的安徽大别山区滑坡易发性评价对比分析

基于不同模型的安徽大别山区滑坡易发性评价对比分析

扫码查看
安徽大别山区是中国滑坡灾害发生较为严重的地区之一,开展滑坡易发性评价研究,可为判断滑坡易发分区的空间分布、产生原因提供科学依据.本文采用极限梯度提升算法、K近邻、逻辑回归、支持向量机、Stacking模型融合方法,利用贝叶斯算法优化模型,选择安徽大别山区1959-2020年的降雨、植被覆盖、地形地质、水文等数据作为输入,结果如下:(1)XGBoost模型验证集AUC为92.06%,Precision,Accuracy,Recall,F1-score得分较高,泛化能力好,适合做为研究区预测模型.模型得出的极高易发区和高易发区分别占总面积的23%和16.2%,分布范围主要在金寨县、霍山县、舒城县南部、潜山县北部、太湖县东部.(2)通过XGBoost模型的特征重要性排序发现,岩性、坡度、8月降雨是最重要的影响因子,曲率、TWI是最不重要的影响因子.
The Comparative Analysis of Landslide Susceptibility Assessment of Dabie Mountain Area,Anhui Province Based on Different Models
Dabie Mountain area in Anhui Province is one of the areas in China with serious landslide disasters.Con-ducting a susceptibility assessment of landslides provides a scientific basis for determining the spatial distribution and causes of landslide-prone areas.In this study,extreme gradient boosting algorithm,K-nearest neighbor,logis-tic regression,support vector machine,and Stacking model fusion method were used,and Bayesian algorithm was used to optimize the model.The rainfall,vegetation cover,topography,geology,hydrology and other data in Dabie Mountain area from 1959 to 2020 were selected as inputs.The results are as follows:(1)The AUC of the XGBoost model on the validation set is 92.06%,and the Precision,Accuracy,Recall,and F1-score are high,indicating good generalization ability and suitability as a prediction model for the research area.The extremely high and high susceptibility areas determined by the model account for 23%and 16.2%of the total area,respectively,mainly distributed in Jinzhai County,Huoshan County,the southern part of Shucheng County,the northern part of Qianshan County,and the eastern part of Taihu County.(2)The feature importance ranking of the XGBoost model shows that lithology,slope,and rainfall in August are the most important influencing factors,while curvature and TWI are the least important influencing factors.

landslidemachine learningDabie Mountain area in Anhui Province

蔡抒、程先富

展开 >

安徽师范大学 地理与旅游学院,安徽 芜湖 241000

滑坡 机器学习 安徽大别山区

国家自然科学基金项目

41271516

2024

安徽师范大学学报(自然科学版)
安徽师范大学

安徽师范大学学报(自然科学版)

CSTPCD
影响因子:0.435
ISSN:1001-2443
年,卷(期):2024.47(2)
  • 23