首页|MPC灰色理论算法在同步预测控制器设计中的应用

MPC灰色理论算法在同步预测控制器设计中的应用

扫码查看
随着人工智能算法和预测模型的发展与优化,对复杂交叉耦合的环境和对象,数学模型建立困难或测试手段精度不高的场景,难以保证有效的控制方案运行和算法应用.首先,在分析干扰模型和同步控制预测原理基础上,引入MPC(模型预测控制)灰色理论算法的经验值理论,灰色预测算法的原理是约束集均方值最优解.其次,将多变的输入参数整合成若干段的模型匹配的数学模型,其控制系统的时间轴能够以离散时序建立完整的时间模型.利于分析和解决无法用传统数字精确描述的复杂模型或系统问题,尤其是信息获取不完备或者失真的参数信息.最后,分析工业控制模型多为纯滞后的二阶惯性环节的时延控制对象,通过三组建模和仿真实验,得出基于MPC灰色理论算法设计同步预测控制器具有较好的优势,属于一种多值混合动态算法.在误差调节和波动抑制具有良好的同步效果.
The Application of MPC Grey Theory Algorithm in the Design of Synchronous Predictive Controller
With the development and optimization of AI algorithms and prediction models,for complex cross-cou-pled environments and objects,where it is difficult to establish mathematical models or the accuracy of test meth-ods is not high,it is difficult to ensure effective control scheme operation and algorithm application.Firstly,based on the analysis of the interference model and the prediction principle of synchronous control,empirical val-ue theory with MPC(Model Predictive Control)grey theory algorithm is introduced and the principle of grey pre-diction algorithm is the optimal solution of the mean square value of the constraint set.Secondly,the variable in-put parameters are integrated into a mathematical model for model matching of several segments and the time axis of its control system can establish a complete time model with discrete time series.It is beneficial to analyze and solve complex models or systems that cannot be described by traditional numbers,especially the incomplete or distorted parameter information.Finally,it is analyzed that industrial control models are mostly time-delay con-trol objects with pure lag second-order inertia links.Through three sets of modeling and simulation experiments,it is concluded that the design of synchronous predictive controller based on MPC grey theory algorithm has better advantages,which belongs to a multivalued hybrid dynamic algorithm and has a good synchronous effect in error adjustment and fluctuation suppression.

error compensationfluctuation suppressionsynchronous controllerpredictive controlMPC grey theory algorithm

欧志新、李继侠、邓春兰

展开 >

安徽交通职业技术学院,城市轨道交通与信息工程系,安徽 合肥 230051

误差补偿 波动抑制 同步控制器 预测控制 MPC灰色理论算法

安徽省高校自然科学研究重点项目高校学科(专业)拔尖人才学术资助项目

2022AH052447GXBJZD2022150

2024

安徽师范大学学报(自然科学版)
安徽师范大学

安徽师范大学学报(自然科学版)

CSTPCD
影响因子:0.435
ISSN:1001-2443
年,卷(期):2024.47(5)