首页|基于WGAN和多头注意力机制的学生数据生成模型

基于WGAN和多头注意力机制的学生数据生成模型

扫码查看
对学生的跨学科能力和创新能力进行评价是目前研究的重点和难点.针对学生公开数据稀缺、获取难度大的问题,本文提出了一种基于Wasserstein Generative Adversarial Networks(WGAN)和多头注意力机制的学生数据生成模型.不同于传统生成式对抗网络(Generative Adversarial Networks,GAN),WGAN以Wasserstein距离为目标函数,强化了生成器的稳定性和训练的可收敛性,提高了生成数据的质量.针对WGAN可能出现的收敛速度慢、生成低质量数据的问题,在WGAN的生成器中引入了多头注意力机制,可以更好地捕捉学生数据中的潜在模式和结构,提高生成数据的质量,并采用均值、标准差和中位数对生成数据进行客观评价.实验结果表明,本文方法可以生成较高质量的学生数据.
A Student Data Generation Model Based on WGAN and Multi-Head Attention Mechanism
The evaluation of students' interdisciplinary ability and innovation ability is the focus and difficulty of current research. In view of the scarcity of public student data and the difficulty to obtain, this paper proposes a student data generation model based on Wasserstein Generative Adversarial Networks ( WGAN ) and multi-head attention mechanism. Different from traditional Generative Adversarial Networks ( GAN) , WGAN takes Wasserstein distance as the objective function, strengthens the stability of the generator and the convergence of training, and improves the quality of the generated data. To address the possible problems of slow convergence and generation of low-quality data in WGAN, a multi-attention mechanism is introduced into the generator of WGAN to better capture the potential patterns and structures in student data, and improve the quality of the generated data. Furthermore, mean value, standard deviation, and median are used to objectively evaluate the generated data. The experiment results show that the presented method can generate higher quality student data.

educational reformmulti-head attentionGANdata generationstudent assessment

张永梅、齐昊宇、郭奥

展开 >

北方工业大学 信息学院,北京100144

教学改革 多头注意力 对抗生成网络 数据生成 学生评价

国家自然科学基金面上项目北方工业大学研究生教育教学改革研究项目

61371143217051360023XN269-20

2024

北方工业大学学报
北方工业大学

北方工业大学学报

影响因子:0.368
ISSN:1001-5477
年,卷(期):2024.36(1)
  • 7