首页|基于Jetson Nano的隐式场景表征重建方法

基于Jetson Nano的隐式场景表征重建方法

扫码查看
随着计算机视觉和边缘计算技术的不断发展,对于复杂场景的高效重建与表征成为了研究的热点之一.本研究提出了一种基于Jetson Nano的隐式场景表征重建方法,旨在通过深度学习和边缘计算技术的有机结合,实现对复杂场景的高效重建与表征.本研究是基于Jetson Nano边缘计算平台,将RGBD相机与其连接,通过网络传输将采集的数据存储于云端.本研究采用了一种创新性的隐式表示模型,通过函数对场景信息进行紧凑而高效的表征.该方法在Jetson Nano边缘计算平台上通过统一计算设备架构(Compute Unified Device Architecture,CUDA)和深度学习推理引擎(Turing Tensor R-Engine,TensorRT)优化,进一步提升了计算效率.结合隐式神经网络和同步定位与地图构建(Simultaneous Localization And Mapping,SLAM)技术,成功实现了三维场景的精准重建,相机追踪中绝对轨迹误差的均方根误差平均值达到了1.87,在各个场景的表现均具有鲁棒性.
Implicit Scene Representation Reconstruction Method Based on Jetson Nano
With the ongoing advancements in computer vision and edge computing technology, there is a growing focus on the efficient reconstruction and representation of complex scenes. This study introduces a method for implicit scene representation reconstruction using Jetson Nano, aiming to seamlessly integrate deep learning with edge computing technology. Leveraging the Jetson Nano edge computing platform and connecting an RGBD camera to it, the collected data is transmitted to the cloud. The study employs an innovative implicit representation model to compactly and efficiently represent scene information through functions. Optimized with Compute Unified Device Architecture ( CUDA) and Turing Tensor R-Engine( TensorRT) on the Jetson Nano platform, the method enhances computational efficiency. By combining implicit neural networks with simultaneous localization and mapping (SLAM) techniques, the research successfully achieves accurate 3D scene reconstruction, with an average root mean square error of absolute trajectory error in camera tracking reaching 1. 87 . The performance proves robust across various scenes.

Jetson Nanoedge computingthree-dimensional reconstructionneural radiance fieldSLAM

孙佳乐、阿卜杜萨拉木·麦合穆提、李杰

展开 >

北方工业大学 信息学院,北京100144

Jetson Nano 边缘计算 三维重建 神经辐射场 同步定位与建图(SLAM)

北方工业大学研究生教育教学改革研究项目

2024

北方工业大学学报
北方工业大学

北方工业大学学报

影响因子:0.368
ISSN:1001-5477
年,卷(期):2024.36(1)
  • 24