首页|基于词嵌入的科研主题排序研究

基于词嵌入的科研主题排序研究

扫码查看
为准确把握科研领域内文献主题的发展变化,常利用隐式语义特征提取科研主题分布.但由于主题挖掘技术本身的限制,并非所有主题都具有同等重要性或意义.有些主题可能包含太多背景词,信息空泛,或者主题词之间缺乏连贯性,导致主题缺乏实际意义.针对上述问题,在已有研究基础上,基于词嵌入,提出一种新的多维度评估主题质量算法;针对科研文档的特点,利用语料库的统计特征对无意义主题距离评估方法进行优化,并最终将二者融合到一个统一的主题排序框架中.实验结果表明,本文提出的方法可以有效提高主题排序整体效果,能够识别出非重要和质量差的主题,主题排序的整体效果优于现有方法.
Automatic Scientific Topic Ranking based on Pre-trained Neural Embedding
To accurately explore the development and changes of topics in the field of scientific research, implicit semantic features are often used to extract the scientific topics. However, due to the limitation of the topic mining technology itself, not all the topics are of equal significant or meaningful. Some topics may contain background terms or lack coherence between topic terms, resulting in the lack of practical significance. According to the existing research, this paper proposes a new multi-dimensional topic quality evaluation algorithm based on word embedding, and uses the statistical features of the corpus to optimize the insignificant topic distance scoring method based on the characteristics of scientific documents, and finally integrates the two into a unified topic ranking framework. Experimental results show that our method can effectively improve the overall effectiveness of topic ranking, and can identify and distinguish the insignificant and poor-quality topics from the legitimate ones. The overall effect of topic ranking is better than existing methods.

topic modelLatent Dirichlet Allocation (LDA)topic rankingscientific topicneural embedding

何东彬、陶莎、任延昭、朱艳红

展开 >

石家庄学院 未来信息技术学院,石家庄050035

中国农业大学 农业农村部农业信息化标准化重点实验室,北京100083

北京工商大学 计算机与信息工程学院,北京100048

石家庄邮电职业技术学院 计算机系,石家庄050021

展开 >

主题模型 潜在狄利克雷分配(LDA) 主题排序 科研主题 词嵌入

河北省重点研发计划河北省农业科技成果转化项目北京市科技计划石家庄学院博士科研启动基金

22320301DV167227514490222110000712200323BS018

2024

北方工业大学学报
北方工业大学

北方工业大学学报

影响因子:0.368
ISSN:1001-5477
年,卷(期):2024.36(1)
  • 1