首页|基于层次分析法和市场法的数据资产定价方法

基于层次分析法和市场法的数据资产定价方法

扫码查看
数据资产定价至今是一个具有挑战性的问题.随着大数据时代的来临,数据资产已成为企业核心竞争力和决策支撑的关键要素.由于数据资产的特殊性,传统的资产定价方法不能完全适用于数据资产,目前还缺乏明确的交易规则和成熟的定价方法.因此,博弈论、期权定价法与市场对比法等成为数据资产定价的新探索方向.本研究在现有方法的基础上,提出一种综合运用层次分析法和市场法的定价模型.具体来说,首先采用专家打分方式选取合适的数据评估指标,运用层次分析法确定各评估指标的权重,然后在交易市场中搜集同类数据资产的交易案例,通过市场法计算市场修正系数,运用权重修正模型和系数修正模型对待评估数据资产进行定价.模型考虑了数据资产的特殊属性,也综合了多种定价方法的优势,能够实现对数据资产更准确和科学的评估.
Data Asset Pricing Approach Based on Hierarchical Analysis and Market Approach
Pricing data assets have been a challenging issue so far. With the advent of the big data era, data assets have become a critical element for enterprise core competitiveness and decision support. Due to the unique nature of data assets, traditional asset pricing methods are not entirely applicable to them. As a result, there is currently a lack of clear transaction rules and mature pricing methods for data assets. As a result, game theory, option pricing methods, and market comparison methods have emerged as new avenues for pricing data assets. This study proposes a pricing model that integrates the Analytic Hierarchy Process ( AHP ) and market-based approaches, building upon existing methods. Specifically, it starts by employing an expert scoring method to select suitable data evaluation indicators. The AHP is then applied to determine the weights of each evaluation indicator. Subsequently, transaction instances involving similar data assets are gathered from trading platforms. Market correction factors are calculated using a market pricing approach. The model utilizes both a weight-adjusted pricing model and a coefficient-adjusted model to assess the pricing of the data assets. The model takes into account the unique attributes of data assets and combines the strengths of various pricing methods, enabling a more accurate and scientific assessment of data assets.

data pricinganalytic hierarchy processmarket approachindicator weightsexpert scoring method

张淳瑞、房俊

展开 >

北方工业大学 信息学院,北京100144

大规模流数据集成与分析技术北京市重点实验室,北京100144

数据资产定价 层次分析法 市场法 指标权重 专家打分法

国家自然科学基金重点项目国家自然科学基金国际(地区)合作与交流项目

6183200462061136006

2024

北方工业大学学报
北方工业大学

北方工业大学学报

影响因子:0.368
ISSN:1001-5477
年,卷(期):2024.36(1)
  • 10