首页|基于DDPM的调制信号星座图去噪方法

基于DDPM的调制信号星座图去噪方法

扫码查看
调制信号广泛应用于有线通信、无线电通信和视频传输等领域.然而,调制信号在传输过程中常受到噪声干扰,这为后续调制识别造成了影响.针对这一问题,本文提出一种基于去噪扩散概率模型(Denoising Diffusion Probabilistic Model,DDPM)的调制信号去噪方法.该方法将理想调制信号星座图样点坐标输入神经网络,基于DDPM正向扩散加噪过程生成噪声数据训练网络模型,用DDPM逆扩散过程实现真实调制信号星座图去噪.该方法能够在任意噪声干扰下,恢复出信噪比较高的调制信号星座图.实验结果表明,该方法在处理二进制相移键控(Binary Phase Shift Keying,BPSK)、正交相移键控(Quadrature Phase Shift Keying,QPSK)、8移相键控(8 Phase Shift Keying,8PSK)调制方式时表现出了显著的去噪效果.当信噪比高于-5 db时,去噪后的星座图样点坐标偏移量仅为1.17e-02,标准差仅为1.53e-04,可有效用于调制识别中.
DDPM-based Denoising for Modulated Signal Constellation
Modulated signals are widely used in the fields of wired communication, radio communication and audio/video transmission.However, modulated signals are often interfered by noise in the transmission process, which leads to negative impact on the subsequent modulation recognition.To address this problem, this paper proposes a Denoising Diffusion Probabilistic Model ( DDPM ) based denoising method for modulated signal constellation.This method feeds the coordinates of the ideal modulation signal constellation pattern into the neural network, trains the network model based on the noise data produced by the DDPM forward diffusion denoising process, and uses the DDPM reverse diffusion process to achieve denoising for the real modulation signal constellation pattern.This method can recover modulated signal constellations with high signal-to-noise ratio under arbitrary noise interference.The experimental results show that this method exhibits significant denoising performance when dealing with Binary Phase Shift Keying ( BPSK) , Quadrature Phase Shift Keying ( QPSK) , and 8 Phase Shift Keying (8PSK) modulation methods.When the signal-to-noise ratio exceeds -5 db, the points coordinates offset of the denoised constellation is only 1.17 e-02 , and the standard deviation is only 1.53 e-04 , which can be effectively used in modulation recognition.

DDPMdenoisingdeep learningmodulated signalconstellation diagram

臧淼、李响、邢志强

展开 >

北方工业大学 信息学院,北京100144

DDPM 去噪 深度学习 调制信号 星座图

2024

北方工业大学学报
北方工业大学

北方工业大学学报

影响因子:0.368
ISSN:1001-5477
年,卷(期):2024.36(2)