首页|进化计算在大规模高维特征选择中的应用综述

进化计算在大规模高维特征选择中的应用综述

扫码查看
随着大数据时代的到来,数据的规模和特征维度呈现爆炸式增长,这给数据处理带来了前所未有的挑战.特征选择作为数据预处理的关键环节,在处理大规模高维数据时显得尤为重要.而进化计算方法因其出色的全局搜索能力和高效的优化性能,越来越多的研究者开始对其进行研究,其在大规模高维特征选择中得到了广泛的应用.本文首先介绍了大规模高维数据处理的重要性;然后简单介绍了部分经典和较新的进化计算方法,并详细介绍了其在大规模高维特征选择中的应用情况;最后对目前进化计算在大规模高维特征选择中存在的问题进行总结,并展望了其未来的发展方向.
Review of Large-scale High-dimensional Feature Selection Based on Evolutionary Computation
With the advent of the big data era, the scale and feature dimensions of data show explosive growth, which brings unprecedented challenges to data processing.Feature selection, as a key link in data preprocessing, is particularly important when processing large-scale high-dimensional data.Due to its excellent global search capabilities and efficient optimization performance, more and more researchers begin to study the evolutionary computing method, and it is widely used in large-scale high-dimensional feature selection.This paper first introduces the importance of large-scale high-dimensional data processing.Then some classic and newer evolutionary calculation methods are briefly introduced, and their applications in large-scale high-dimensional feature selection are introduced in detail.Finally, the application of evolutionary computing in large-scale high-dimensional feature selection is summarized and its future development direction is prospected.

feature selectionevolutionary computationglobal searchdata preprocessingmachine learning

叶志伟、王巧、周雯、王明威、蔡婷、何其祎

展开 >

湖北工业大学 计算机学院,武汉430068

特征选择 进化计算 全局搜索 数据预处理 机器学习

2024

北方工业大学学报
北方工业大学

北方工业大学学报

影响因子:0.368
ISSN:1001-5477
年,卷(期):2024.36(2)