首页|基于事件时间论元抽取的文档级时序抽取方法研究

基于事件时间论元抽取的文档级时序抽取方法研究

扫码查看
事件时序关系识别任务属于关系抽取领域的一个分支,近年来受到越来越多的关注.目前,关于章级事件时序关系抽取的研究在现有神经网络方法中尚未得到充分深入探讨.因此,本文提出一种基于篇章事件时序关系矩阵的方法,利用语言学中的时间论元理论来指导模型抽取效果;通过修改预训练阶段的词嵌入,将句子的时态、体态和时间副词作为额外信息融入事件触发词的词嵌入表达中;同时,模型还利用了事件时间论元抽取任务进行辅助训练,从而构建了具有增强时间特征的文本表达.研究发现通过将事件时间论元抽取任务融入模型训练过程,该模型在事件时序关系抽取任务上获得了比基线更好的效果.
Research on Document Level Temporal Extraction Method Based on Event Time Argument Extraction
The task of identifying event temporal relationships is a branch of the field of relationship extraction,which has received increasing attention in recent years. At present,research on extracting temporal relationships of chapter level events has not been fully explored in existing neural network methods. Therefore,this paper proposes a method based on the temporal relationship matrix of text events,and uses the time argument theory in linguistics to guide the model extraction effect. By modifying the word embedding in the pre training stage,the tense,aspect,and time adverbs of the sentence are incorporated as additional information into the word embedding expression of event triggered words. At the same time,the model also utilizes event time argument extraction tasks for auxiliary training,thereby constructing text expressions with enhanced temporal features. By incorporating the task of extracting event time arguments into the model training process,the model achieved better performance than the baseline in extracting event temporal relationships.

relationship extractiontemporal relationshipsevent time argumentpre-trainingextraction matrix

肖彬、郁兴腾、戴诗伟

展开 >

北方工业大学 信息学院,北京100144

关系抽取 时序关系 事件时间论元 预训练 抽取矩阵

2024

北方工业大学学报
北方工业大学

北方工业大学学报

影响因子:0.368
ISSN:1001-5477
年,卷(期):2024.36(3)