首页|基于BP神经网络的河北省GDP预测研究

基于BP神经网络的河北省GDP预测研究

扫码查看
国内生产总值(Gross Domestic Product,GDP),是一个国家(或地区)所有常住单位在一定时期内生产活动的最终成果.考察一个地区的发展现状以及发展前景,都需要综合考虑该地区的GDP与其他指标的影响关系,因此区域GDP预测也是一项重要且不可缺少的工作.本文通过分析相关文献,以河北省1989年到2021年的数据为基础,利用Back Propagation(BP)神经网络模型来预测河北省GDP,将数据分为训练集和测试集两个分组,其中训练集为1989—2018年数据,测试集为2019—2021年数据,最终对比预测值和期望值的实际相对误差.结果表明,该模型预测结果相对误差基本控制在5%以内,能够有效地预测河北省GDP.
Research on GDP Prediction of Hebei Province Based on BP Neural Network
Gross Domestic Product (GDP) is the final result of the production activities of all resident units in a country ( or region) over a certain period of time. To examine the current development status and prospects of a region,it is necessary to comprehensively consider the relationship between its GDP and other indicators. Therefore,regional GDP prediction is also an important and indispensable work. This article analyzes relevant literature and uses the Back Propagation ( BP) neural network model to predict the GDP of Hebei Province based on the data from 1989 to 2021. The data is divided into two groups. The training set is from 1989 to 2018,and the testing set is from 2019 to 2021. Finally,the actual relative errors between the predicted and expected values are compared. The results show that the relative error of the model's prediction results is basically controlled within 5%,and it can effectively predict the GDP of Hebei Province.

GDPregional GDP forecastBP neural networkactual relative error

于涧、马涛、于泽翔、洪欣

展开 >

沈阳师范大学 数学与系统科学学院,沈阳110086

东北大学 悉尼智能科技学院,沈阳110819

国内生产总值 区域GDP预测 BP神经网络 实际相对误差

2024

北方工业大学学报
北方工业大学

北方工业大学学报

影响因子:0.368
ISSN:1001-5477
年,卷(期):2024.36(3)