首页|改进CNN-LSTM模型的滚动轴承剩余寿命预测方法

改进CNN-LSTM模型的滚动轴承剩余寿命预测方法

扫码查看
在使用卷积层神经网络(Convolutional Neural Networks,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)模型对滚动轴承剩余寿命预测时,预测结果的准确性会受到实验参数的影响.为此,提出了一种使用鲸鱼优化算法对模型参数进行干预,降低参数调试复杂性的方法.首先,选用相关性、单调性、鲁棒性3种特征评价指标和相似相关系数对特征加权排序,建立特征筛选体系;其次,采用CNN-LSTM基本结构,通过内嵌鲸鱼算法进行参数寻优;最后,采用PHM2012滚动轴承数据集,实现轴承的剩余寿命预测,验证了改进后模型的预测性能更优.
Improving Residual Life Prediction of Rolling Bearings with CNN-LSTM Model
When using Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM)models for predicting the remaining life of rolling bearings,the accuracy of the prediction results is influenced by experimental parameters.Therefore,a method was proposed to intervene in the model parameters using the Whale Optimization Algorithm,reducing the complexity of hyperparameter tuning.Firstly,three feature evaluation metrics of relevance,monotonicity,and robustness,as well as the similarity correlation coefficient,were used to rank features by weighted sorting,establishing a feature selection system.Secondly,the basic structure of CNN-LSTM was employed,and parameter optimization was carried out using the embedded Whale Optimization Algorithm.Finally,with the PHM2012 rolling bearing dataset,the prediction of bearing remaining life was achieved,validating the superior predictive performance of the improved model.

rolling bearingsCNN-LSTMresidual life predictionwhale algorithm

韩允童、王靖岳、侯兴达、李雪萍、丁建明

展开 >

沈阳理工大学汽车与交通学院,沈阳 110159

滚动轴承 CNN-LSTM 剩余寿命预测 鲸鱼算法

辽宁省"百千万人才工程"经费资助项目辽宁省自然科学基金牵引动力国家重点实验室开放基金

20209210312020-MS-216TPL2310

2024

车辆与动力技术
中国兵工学会

车辆与动力技术

影响因子:0.287
ISSN:1009-4687
年,卷(期):2024.(2)
  • 8