首页|基于数字孪生的永磁同步电机热模型标定研究

基于数字孪生的永磁同步电机热模型标定研究

扫码查看
为提高永磁同步电机热状态监测精度与速度,提出了基于数字孪生的永磁同步电机热模型标定方法.对电机的有限元模型进行了构建与降阶,搭建基于卷积神经网络与长短时记忆网络的热孪生体降阶模型,并进行了模型的离线与在线标定,完成了虚实空间的映射与交互,保证了物理实体实际状态发生变化后数字孪生体的更新和精度.
Research on Thermal Model Calibration of Permanent Magnet Synchronous Motor Based on Digital Twin
In order to improve the accuracy and speed of monitoring,a calibration method based on digital twin is proposed.The finite element model of the motor is constructed and reduced,the thermal twin model based on deep learning and singular value decomposition is built,and the offline and online calibration,the mapping and interaction of the virtual and real space are completed,which ensures the update and accuracy of the digital twin after the actual state of the physical entity changes.

digital twin modelreduced order modelconvolutional neural networkonline calibrationpermanent magnet synchronous motor

孙浩天、沈鉴彪、周新武

展开 >

中国北方车辆研究所,北京 100072

数字孪生模型 降阶模型 卷积神经网络 长短时记忆网络 在线标定 永磁同步电机

2024

车辆与动力技术
中国兵工学会

车辆与动力技术

影响因子:0.287
ISSN:1009-4687
年,卷(期):2024.(4)