北华大学学报(自然科学版)2025,Vol.26Issue(1) :1-9.DOI:10.11713/j.issn.1009-4822.2025.01.001

均值回归过程扰动下具双重流行假设的随机SIS流行病模型

A Stochastic SIS Epidemic Model with Double Epidemic Hypothesis under Mean Regression Process

李佳琦 林玉国
北华大学学报(自然科学版)2025,Vol.26Issue(1) :1-9.DOI:10.11713/j.issn.1009-4822.2025.01.001

均值回归过程扰动下具双重流行假设的随机SIS流行病模型

A Stochastic SIS Epidemic Model with Double Epidemic Hypothesis under Mean Regression Process

李佳琦 1林玉国1
扫码查看

作者信息

  • 1. 北华大学数学与统计学院,吉林 吉林 132013
  • 折叠

摘要

考虑一类非线性发病率下双重流行假设的随机SIS流行病模型.首先,通过对传播率进行均值回归过程下的扰动,建立随机模型;其次,从理论上证明了随机模型具有唯一的全局正解;再次,通过构造李雅普诺夫函数,得到两种传染病灭绝的充分条件.最后证明了:当R*1>1、R′2<1时,疾病I1 持久,疾病I2 灭绝;当R′1<1、R*2>1 时,疾病I2 持久,疾病I1 灭绝;当R*1>1、R*2>1 时,疾病I1 和I2 均持久.

Abstract

A class of stochastic SIS epidemic model with dual epidemic hypothesis under nonlinear incidence rate is considered.First,a stochastic model is established by perturbing the transmission rate under the mean regression process;Secondly,it has been theoretically proven that the stochastic model has a unique global positive solution;Next,sufficient conditions for the extinction of two infectious diseases are obtained by constructing Lyapunov functions.Finally,it is further derived that when R*1>1,R′2<1,the diseases I1 will persist and I2 will become exti-nct;When R′1<1,R*2>1,the diseases I2 will persist and I1 will become extinct;When R*1>1,R*2>1,the dise-ases I1 and I2 will persist.

关键词

SIS模型/均值回归过程/李雅普诺夫函数

Key words

SIS model/mean regression process/Lyapunov function

引用本文复制引用

出版年

2025
北华大学学报(自然科学版)
北华大学

北华大学学报(自然科学版)

影响因子:0.609
ISSN:1009-4822
段落导航相关论文