首页|基于ELM-AE和BP算法的极限学习机特征表示方法

基于ELM-AE和BP算法的极限学习机特征表示方法

扫码查看
基于极限学习机自编码器(extreme learning machine based autoencoder,ELM-AE)和误差反向传播(back propagation,BP)算法,针对ELM提出了一种改进的特征表示方法。首先,使用ELM-AE以无监督的方式学习紧凑的特征表示,即ELM-AE输出权重;其次,利用ELM-AE输出权重来初始化BP神经网络的输入权重,然后对BP网络进行监督训练;最后,用微调的BP网络输入权重初始化ELM的输入权重参数。在MNIST数据集上的实验结果表明,采用BP算法对ELM-AE学习的参数进行约束,可以得到更紧凑且具有判别性的特征表示,有助于提高ELM的性能。
Feature representation method for extreme learning machine based on ELM-AE and BP algorithms
An improved feature representation method for extreme learning machine(ELM)was proposed based on extreme learning machine based autoencoder(ELM-AE)and error back propagation(BP)algorithms.Firstly,ELM-AE was used to learn compact feature representation i.e.ELM-AE output weights,in an unsupervised way.Secondly,ELM-AE output weights were used to initialize the input weights of the BP neural network,which was then trained by BP network in a supervised way.Finally,the input weight parameters of ELM were initialized by the input weight of the fine-tuned BP network.The experimental results on MNIST dataset show that using the BP algorithm to constrain the parameters of ELM-AE learning can result in a more compact and discriminative feature representation,which helps to improve the performance of ELM.

extreme learning machine based autoencoder(ELM-AE)error back propagationextreme learning machine

苗军、刘晓、常艺茹、乔元华

展开 >

北京信息科技大学网络文化与数字传播北京市重点实验室,北京 100101

北京工业大学应用数理学院,北京 100124

极限学习机自编码器 误差反向传播 极限学习机

北京市自然科学基金天津市安监物联网技术企业重点实验室研究项目贵州省科技计划

4202025VTJ-OT20230209-2ZK[2022]-012

2024

北京信息科技大学学报(自然科学版)
北京信息科技大学

北京信息科技大学学报(自然科学版)

影响因子:0.363
ISSN:1674-6864
年,卷(期):2024.39(1)
  • 23